scikit-learn中PCA的使用方法
@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/42192293
在前一篇文章 主成分分析(PCA) 中,我基于python和numpy实现了PCA算法,主要是为了加深对算法的理解,算法的实现很粗糙,实际应用中我们一般调用成熟的包,本文就结束scikit-learn中PCA使用的方法和需要注意的细节,参考:sklearn.decomposition.PCA
1、函数原型及参数说明
sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n类型:int 或者 string,缺省时默认为None,所有成分被保留。赋值为int,比如n_components=1,将把原始数据降到一个维度。赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。
copy:
类型:bool,True或者False,缺省时默认为True。意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不 会有任何改变,因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的 值会改,因为是在原始数据上进行降维计算。
whiten:
类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。关于“白化”,可参考:Ufldl教程
2、PCA对象的属性
3、PCA对象的方法
- fit(X,y=None)
- fit_transform(X)
- inverse_transform()
- transform(X)
4、example
>>> data
array([[ 1. , 1. ],
[ 0.9 , 0.95],
[ 1.01, 1.03],
[ 2. , 2. ],
[ 2.03, 2.06],
[ 1.98, 1.89],
[ 3. , 3. ],
[ 3.03, 3.05],
[ 2.89, 3.1 ],
[ 4. , 4. ],
[ 4.06, 4.02],
[ 3.97, 4.01]])
data这组数据,有两个特征,因为两个特征是近似相等的,所以用一个特征就能表示了,即可以降到一维。下面就来看看怎么用sklearn中的PCA算法包。
>>> from sklearn.decomposition import PCA
>>> pca=PCA(n_components=1)
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
[-2.22617682],
[-2.09185561],
[-0.70594692],
[-0.64227841],
[-0.79795758],
[ 0.70826533],
[ 0.76485312],
[ 0.70139695],
[ 2.12247757],
[ 2.17900746],
[ 2.10837406]])
>>> data
array([[ 1. , 1. ],
[ 0.9 , 0.95],
[ 1.01, 1.03],
[ 2. , 2. ],
[ 2.03, 2.06],
[ 1.98, 1.89],
[ 3. , 3. ],
[ 3.03, 3.05],
[ 2.89, 3.1 ],
[ 4. , 4. ],
[ 4.06, 4.02],
[ 3.97, 4.01]])
( 2)将copy设置为False,原始数据data将发生改变。
>>> pca=PCA(n_components=1,copy=False)
>>> newData=pca.fit_transform(data)
>>> data
array([[-1.48916667, -1.50916667],
[-1.58916667, -1.55916667],
[-1.47916667, -1.47916667],
[-0.48916667, -0.50916667],
[-0.45916667, -0.44916667],
[-0.50916667, -0.61916667],
[ 0.51083333, 0.49083333],
[ 0.54083333, 0.54083333],
[ 0.40083333, 0.59083333],
[ 1.51083333, 1.49083333],
[ 1.57083333, 1.51083333],
[ 1.48083333, 1.50083333]])
>>> pca=PCA(n_components='mle')
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
[-2.22617682],
[-2.09185561],
[-0.70594692],
[-0.64227841],
[-0.79795758],
[ 0.70826533],
[ 0.76485312],
[ 0.70139695],
[ 2.12247757],
[ 2.17900746],
[ 2.10837406]])
>>> pca.n_components
1
>>> pca.explained_variance_ratio_
array([ 0.99910873])
>>> pca.explained_variance_
array([ 2.55427003])
>>> pca.get_params
<bound method PCA.get_params of PCA(copy=True, n_components=1, whiten=False)>
我们所训练的pca对象的n_components值为1,即保留1个特征,该特征的方差为2.55427003, 占所有特征的方差百分比为0.99910873,意味着几乎保留了所有的信息。get_params返回各个参数的值。
>>> newA=pca.transform(A)对新的数据A,用已训练好的pca模型进行降维。
>>> pca.set_params(copy=False)
PCA(copy=False, n_components=1, whiten=False)设置参数。
scikit-learn PCA 使用详解
本文详细介绍了如何使用 scikit-learn 中的 PCA (主成分分析) 方法进行数据降维,包括函数原型、参数说明、对象属性和方法等,并通过实例展示了不同参数设置的效果。
5773

被折叠的 条评论
为什么被折叠?



