运算放大器:开环增益,闭环增益虚短与虚断

一:概述

        在电路设计中,读懂运算放大器的指标,选择合适的运算放大器是非常重要的(以下简称运放),而开环增益是选择运放中最基本的指标,那么什么是开环增益,开环增益与闭环增益有什么关系,本文将深入探讨。

二:理想运算放大器的特点

        对于理想运放的输入级:

        1.无穷大的输入阻抗

        2.无穷大的差分增益与共模电压抑制比

        3.无穷小的输入失调电压,偏置电流和失调电流

        对于理想运放的输入级:

        1.无穷小的输出阻抗

理想运放的模型

三:虚短与虚断

        虚断:由于理想运放的输入阻抗无穷大,所以在输入端没有任何的负载效应,也就是输入运放的电流为0,这一特性称为虚断。

        虚短:观察理想运放的模型,其输出与输入的关系 

        Vout = A_{ol}×V_{E}

        其中Vout是输出电压,Aol是开环增益,VE是输入级电压差,而理想运放的开环增益无穷大,所以VE的值为0,也就是运放的同相输入端与反相输入端等电位,这一特性称为虚短。应用虚短需要实现三个条件:

        1.开环增益无穷大

        2.要有负反馈电路

        3.放大器工作在线性状态

四:开环增益、闭环增益

        开环增益的简单理解就是没有反馈回路时放大器的增益,此增益是放大器独有的属性,与外围电路无关。闭环增益是存在反馈回路时的增益。

        在了解了虚断以及虚短的概念后,我们先分析一个最基本的同相比例放大器。

        这是一个最基本的同相比例放大器,如果开环增益无穷大,可以根据虚短,可以得到R2电阻上的电位等于输入信号ui,可以列出输出电压uo与ui的关系:

  \frac{R2}{R1+R2}u_{o} = u_{i}

        化简后可以得到:

  u_{o} = \frac{R1+R2}{R2}u_{i} 

         将电阻值带入后,可以知道此放大电路将输入信号放大两倍,此时的放大倍数\frac{R1+R2}{R2}就是我们常说的闭环增益。开环增益如何影响闭环增益的?我们继续向下分析。

       实际的运放的开环增益并不是无穷大,所以不可以使用虚短的特性。那么再分析此电路:

u_{o} = A_{ol}(u_{+} - u_{-})

u_{+} = u_{i} 

u_{-} = \frac{R2}{R1+R2}u_{o} 

         其中\frac{R2}{R1+R2}我们定义为反馈系数\beta,将上面的式子结合后,得到如下表达式:

\frac{u_{o}}{u_{i}} = \frac{A_{ol}}{1+A_{ol}\beta }

         观察此表达式,如果开环增益A_{ol}无穷大,那么放大倍数就是我们通过虚短分析得到的\frac{R1+R2}{R2},但是实际运放做不到开环增益无穷大,我们举几个例子来说明一下

A_{ol} = \infty\frac{u_{o}}{u_{i}} = 2

                            A_{ol} = 100000\frac{u_{o}}{u_{i}} = 1.99996                            

A_{ol} = 10000\frac{u_{o}}{u_{i}} = 1.9996 

A_{ol} = 1000\frac{u_{o}}{u_{i}} = 1.996

A_{ol} = 100\frac{u_{o}}{u_{i}} = 1.96

       A_{ol} = 10\frac{u_{o}}{u_{i}} = 1.67

 A_{ol} = 1\frac{u_{o}}{u_{i}} = 0.67

         从上面至少可以看出三点:

        1.在A_{ol}比较小的时候,实际增益就与理想情况下的增益有明显差异了。比如如果A_{ol}=1000,实际闭环增益为1.996,与我们想象的放大2倍就已经有1%左右的差异,如果A_{ol}=10,实际Av=1.67,已经有很大的差距了。

        2.在A_{ol}比较大的时候,一致性要求低。尽管AoL=100万和AoL=10万二者相差了10倍,误差都非常小。也就是说只要运放开环增益A_{ol}足够大,闭环增益都基本稳定在同一个值,正是因为这样,我们对运放的开环增益AoL的一致性要求就很低了,只要求大就可以了,不管是50万倍还是100万倍,闭环增益都基本一样。我们实际运放的AoL也确实没那么精确。

        3.对于这个表达式\frac{u_{o}}{u_{i}} = \frac{A_{ol}}{1+A_{ol}\beta },可以看到系统是存在一个极点的,在A_{ol}\beta = -1时(其中A_{ol}\beta)被定义为环路增益,输出信号将会不稳定发生震荡,所以在设计电路时要避免这种情况。

        下面我们从具体的运放芯片手册中看开环增益,以TI公司推出的精密运放OPA365为例,下面给出开环增益在手册中的描述:

        上面是截取OPA365手册的第一页,我们从中没有找到开环增益的描述,但是在第一项中给出了增益带宽的概念,OPA365的增益带宽是50MHz,有的运放手册还会给出增益带宽积(GBW)或者给出单位增益带宽,无论是增益带宽还是增益带宽积,都可以理解为开环增益降低到1时,输入信号的频率。这个概念对于运放的选型很重要,例如我们想要把一个50MHz的高频信号放大10倍,那这个运放很显然不满足要求。

        一般运放的开环增益都会在运放手册的特性中以图的形式给出,如下图是OPA365的开环增益与频率的对应关系:

         可以看到OPA365的最大开环增益是120dB(100000),开环增益曲线以20dB每10倍频乘的速度下降,当到达50MHz时,开环增益为0dB,此时对应的频率就是单位增益带宽。

        

内容概要:本文详细探讨了运算放大器开环增益(AVOL)及其非线性特性。文章首先介绍了开环增益的基本概念,指出其对于电压反馈型运算放大器非常重要,通常在十万到百万之间,高精度应用需要更高的增益。文中提到增益随温度和其他因素变化不稳定,从而可能导致闭环增益误差。通过数学推导,给出了增益不确定性的计算公式,并解释了高增益有助于减小闭环增益误差的原因。同时探讨了由于开环增益有限而引起的闭环增益非线性,提出了一些实验测试方法来量化这种非线性,包括采用X-Y示波器显示测试,这适用于精确的直流测量和其他宽带应用如音频。最后提供了一个具体的例子展示了一种高精度运算放大器OP177在不同负载条件下的非线性表现。 适合人群:电子工程技术人员、高校学生以及对模拟电路有兴趣的技术爱好者。 使用场景及目标:本文旨在帮助理解和评估不同类型运算放大器开环增益性能和非线性,以便设计更为精准可靠的放大器电路;特别是那些希望提高测量准确度并减少信号失真的从业者将从中受益。 阅读建议:本资料适合有一定电路理论基础的读者深入研究,在学习时需特别关注公式及其背后的物理意义,并建议跟随文中的测试方法进行动手实验以加深理解。此外,读者可以查阅参考资料获取更多背景信息和技术细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值