CSWek10 Take number

问题描述:

YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。
给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。

Input:
第一行包含一个整数 n (1 ≤ n ≤ 10^5),表示数字里的元素的个数
第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 10^5)

Output:
输出一个整数:n你能得到最大分值。

Sample Input
2
1 2
Sample Output:
2
Sample Input
3
1 2 3
Sample Output
4
Sample Input
9
1 2 1 3 2 2 2 2 3
Sample Output
10

解题思路:

本题同样是采用动态规划的思想,其实也是最优化问题转化最优化子问题,令dp[i]为拿的数最大是i的最大分数,那么dp[i]就可以由前面一个状态转移过来, ①拿了这个数,前面的状态是dp[i-2]②不拿这个数,前面的状态是dp[i-1],即 状态转移方程为:dp[i] = max(dp[i-1], dp[i-2]+A[i]),数要么全拿要么不拿,很明显,最大值就是dp[maxn]。
note:又忘记了%lld,以及a数组的数据类型应该是ll,因为中间运算会超出int数据范围被截断……

实验代码:

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int sz=100010;
long long int a[sz],maxn=0;			
long long int dp[sz];
long long int ans;
void getAns()
{
	dp[1]=a[1];
	for(int i=2;i<=maxn;i++)		
		dp[i]=max(dp[i-1],dp[i-2]+a[i]*i);		
	ans=dp[maxn];
} 
int main(void)
{
	int n,m;
	scanf("%d",&n); 
	for(int i=0;i<n;i++)
	{
		scanf("%d",&m);
		a[m]++;			
		if(m>maxn)	maxn=m;	 
	}
	getAns();
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值