Java线程池原理及使用

java中的线程池是运用场景最多的并发框架。在开发过程中,合理的使用线程池能够带来下面的一些好处:
1、降低资源的消耗。
2、提高响应速度。
3、提高线程的可管理型。

1.1、线程池ThreadPoolExecutor工作原理

讲解之前,我们先看一张原理图
20160221172500424.png

ThreadPoolExecutor执行execute方法有4种情况:
1)如果当前运行的线程少于corePoolSize,则创建新的线程来执行任务。
2)如果运行的线程等于或者多余corePoolSize,则将任务加入BlockingQueue中,在等待队列中,等待有新的线程可以运行。
3)如果BlockingQueue队列满了,且没有超过maxPoolSize,则创建新的线程来处理任务。
4)如果创建的线程超过maxPoolSize,任务会拒绝,并调用RejectExecutionHandler.rejectedExecution()方法。

1.2、线程池的使用

1.2.1、线程池的创建

一般我们可以通过ThreadPoolExecutor来创建一个线程池。
在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

我们通过

new ThreadPoolExecutor(corePoolSize,maximumPoolSize,keepAliveTime,unit,workQueue,threadFactory,handler);

创建一个新的线程池。

下面我们介绍一下需要输入的几个参数的意义:

1)corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;

2) maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;

3)keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;

  • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒</pre>

4) workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

  • ArrayBlockingQueue:一个基于数组结构的有界阻塞队列。
  • LinkedBlockingQueue:一个基于链表的阻塞队列,吞吐量要高于ArrayBlockingQueue。
  • SynchronousQueue:一个不存储元素的阻塞队列。每次插入操作必须等到另外一个线程调用移除操作,否则一直处于阻塞状态。吞吐量要高于LinkedBlockingQueue。
  • PriorityBlockingQueue:一个具有优先级的无线阻塞队列。

ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。

5)threadFactory:线程工厂,主要用来创建线程;
6)RejectedExecutionHandler:当队列和线程池都满了,将会执行下面的策略,jdk1.5中提供有以下四种策略:

  • ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
  • ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
  • ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
  • ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
1.2.2、如何向线程池提交任务

向线程池提交任务,提供了两种方法,分别是execute()和submit()方法。

1)execute()方法

execute方法用于提交不需要返回值的任务,所以也就意味着无法判断是否执行成功。

pool.execute(new Runnable(){

			@Override
			public void run() {
				System.out.println("使用execute提交任务.");
			}
			
});

2)submit方法

submit方法可以用于提交需要有返回值的任务。线程池会返回一个future类型的对象,通过这个future对象可以判读是否执行成功,并且还可以通过get()方法来获取返回值。

Runnable task = null;
		Future<Object> future = (Future<Object>) pool.submit(task);
        try {
			future.get();//获取返回值
		} catch (InterruptedException e) {//中断异常处理
			// TODO Auto-generated catch block
			e.printStackTrace();
		} catch (ExecutionException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} finally {
			//关闭线程池
			pool.shutdown();
		}
1.2.3、关闭线程池

在上一节中,我们在异常的处理后面,我们就使用到了shutdown()方法来关闭线程池。

在关闭线程池的时候,这里有两个方法可以调用,分别是shutdownshutdownNow方法。

1.3、线程池使用实例

1.3.1、线程池的使用实例

这个实例我们使用自定义的拒绝策略,因为jdk的策略并不是很完美

public class MyRejected implements RejectedExecutionHandler{

	
	public MyRejected(){
	}
	
	@Override
	public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
		System.out.println("自定义处理..");
		System.out.println("当前被拒绝任务为:" + r.toString());
		

	}

}

然后我们定义一个任务类

public class MyTask implements Runnable {

	private int taskId;
	private String taskName;
	
	public MyTask(int taskId, String taskName){
		this.taskId = taskId;
		this.taskName = taskName;
	}
	
	public int getTaskId() {
		return taskId;
	}

	public void setTaskId(int taskId) {
		this.taskId = taskId;
	}

	public String getTaskName() {
		return taskName;
	}

	public void setTaskName(String taskName) {
		this.taskName = taskName;
	}

	@Override
	public void run() {
		try {
			System.out.println("run taskId =" + this.taskId);
			Thread.sleep(5*1000);
			//System.out.println("end taskId =" + this.taskId);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}		
	}
	
	public String toString(){
		return Integer.toString(this.taskId);
	}

}

最后,我们看一下任务执行

public class UseThreadPoolExecutor1 {


	public static void main(String[] args) {
		/**
		 * 在使用有界队列时,若有新的任务需要执行,如果线程池实际线程数小于corePoolSize,则优先创建线程,
		 * 若大于corePoolSize,则会将任务加入队列,
		 * 若队列已满,则在总线程数不大于maximumPoolSize的前提下,创建新的线程,
		 * 若线程数大于maximumPoolSize,则执行拒绝策略。或其他自定义方式。
		 * 
		 */	
		ThreadPoolExecutor pool = new ThreadPoolExecutor(
				1, 				//coreSize
				2, 				//MaxSize
				60, 			//60
				TimeUnit.SECONDS, 
				new ArrayBlockingQueue<Runnable>(3)			//指定一种队列 (有界队列)
				//new LinkedBlockingQueue<Runnable>()
				, new MyRejected()
				//, new DiscardOldestPolicy()
				);
		
		MyTask mt1 = new MyTask(1, "任务1");
		MyTask mt2 = new MyTask(2, "任务2");
		MyTask mt3 = new MyTask(3, "任务3");
		MyTask mt4 = new MyTask(4, "任务4");
		MyTask mt5 = new MyTask(5, "任务5");
		MyTask mt6 = new MyTask(6, "任务6");
		
		pool.execute(mt1);
		pool.execute(mt2);
		pool.execute(mt3);
		
		
		
		/*pool.execute(mt4);
		pool.execute(mt5);
		pool.execute(mt6);*/
		
		pool.shutdown();
//		pool.shutdownNow();
		
	}
}

执行结果:
1)当运行<5个时,可以正常运行:
搜狗截图20180927165203.jpg
2)当>5时,因为大于了最大值,所以执行了异常策略:
搜狗截图20180927165223.jpg

1.3.2、线程池的监控参数或者其他api使用

当我们需要对线程池进行监控时,我们可以使用线程池提供的参数进行监控,可以使用下面的一些属性。

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的数量。
  • largestPoolSize:线程池里曾经创建过的最大的线程数量。
  • poolSize:线程池的线程数量。
  • ActiveCount:获取活动的线程数量。
System.out.println(pool.getTaskCount());
System.out.println(pool.getCompletedTaskCount());
System.out.println(pool.getLargestPoolSize());
System.out.println(pool.getPoolSize());
System.out.println(pool.getActiveCount());

运行结果:
搜狗截图20180927170209.jpg

1.4、如何合理的配置线程池的大小

一般需要根据任务的类型来配置线程池大小:

  • 如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1

  • 如果是IO密集型任务,参考值可以设置为2*NCPU

  • 建议使用有界队列。因为有界队列能够增加系统的稳定性和预警的能力,我们可以想象一下,当我们使用无界队列的时候,当我们系统的后台的线程池的队列和线程池会越来越多,这样当达到一定的程度的时候,有可能会撑满内存,导致系统出现问题。当我们是有界队列的时候,当我们系统的后台的线程池的队列和线程池满了之后,会不断的抛出异常的任务,我们可以通过异常信息做一些事情。

当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行适当调整。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hello-java-maker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值