DL with Pytorch Lighting
文章平均质量分 95
PyTorch Lightning 让研究人员可以快速轻松地构建自己的深度学习模型,而无需担心复杂性。本书将帮助您最大限度地提高深度学习项目的生产力,同时确保从模型制定到实施的完全灵活性。
Sonhhxg_柒
Save your heart for someone who cares. #愿岁月清净 抬头遇见皆是柔情#
展开
-
【Pytorch Lighting】第 10 章:扩展和管理培训
领域,我们仍有许多未解决的问题需要开发新的算法,还有许多未解决的问题需要设计新的架构。但是,启动笔记本的机器的当前工作目录不是在云笔记本中保存检查点的好选择,因为它们的底层基础设施具有瞬态性,如上一节所述。)、半监督学习和自监督学习,它们扩展了 ML 领域的可能性,而这些不仅仅是先进的模型,但创造艺术的超酷方式和很多乐趣。虽然这本书的目的是让那些正在开始他们的 DL 之旅的人开始并运行,但我们希望那些来自其他框架的人也发现这是一种快速而简单地过渡到 PyTorch Lightning 的方法。原创 2022-11-07 09:14:40 · 1921 阅读 · 7 评论 -
【Pytorch Lighting】第 9 章:部署和评分模型
在不知情的情况下,您可能已经体验过本书迄今为止介绍的一些模型。回想一下您的照片应用程序如何自动检测照片集中的面孔或将所有照片与特定朋友组合在一起。这只不过是一个实际的图像识别深度学习模型(卷积神经网络(CNNs)),或者您可能熟悉 Alexa 听您的声音或 Google 在搜索查询时自动完成您的文本。这些是基于 NLP 的深度学习模型,让我们的工作变得更轻松。或者您可能已经看到一些电子购物应用程序或社交媒体网站建议产品的标题;这就是半监督学习的全部荣耀!但是,您如何使用在 Python Jupyter 笔记原创 2022-11-07 09:14:30 · 1722 阅读 · 3 评论 -
【Pytorch Lighting】第 8 章:自监督学习
自机器学习问世以来,该领域被整齐地划分为两个阵营:监督学习和无监督学习。在监督学习中,应该有一个可用的标记数据集,如果不是这样,那么剩下的唯一选择就是无监督学习。虽然无监督学习听起来很棒,因为它可以在没有标签的情况下工作,但在实践中,无监督方法(如聚类)的应用非常有限。评估无监督方法的准确性或部署它们也没有简单的选择。最实用的机器学习应用程序往往是监督学习应用程序(例如,识别图像中的对象、预测未来的股票价格或销售量,或者在 Netflix 上向您推荐合适的电影)。监督学习的权衡是精心策划和高质量可信赖标签的原创 2022-11-07 09:14:09 · 1138 阅读 · 11 评论 -
【Pytorch Lighting】第 7 章:半监督学习
使用如此大的数据集训练模型需要很长时间,因此我们过滤掉了 4,000 张图像及其相关的标题,我们将在后面介绍。随着更多的时期,结果将继续变得更好。涉及大型数据集,例如 COCO 2017 中的所有图像和字幕,使用如此大的数据集训练模型需要强大的机器和大量的时间。优化器的选择是一个非常重要的超参数,对模型的训练方式有很大的影响。我们在这个项目中所做的是对该领域最近开发的算法的适度包装,将它们扩展到不同的领域。的图像,那么我们可以使用它来生成文本,这取决于它可能是由唐纳德特朗普或希拉里克林顿或其他人说的。原创 2022-11-06 18:34:46 · 1716 阅读 · 12 评论 -
【Pytorch Lighting】第 6 章:深度生成模型
打造一台能与人类智慧相匹敌的机器,一直是人类的梦想。而智能这个词具有多个维度,例如计算、物体识别、语音、理解上下文和推理;人类智力的任何方面都没有比我们的创造力更人性化。创作一件艺术品的能力,无论是一首音乐、一首诗、一幅画还是一部电影,一直是人类智慧的缩影,擅长这种创造力的人往往被视为“天才” 。 " 仍然完全没有答案的问题是,机器可以学习创造力吗? 我们已经看到机器学习使用各种信息来预测图像,有时甚至使用很少的信息。机器学习模型可以从一组训练图像和标签中学习,以识别图像中的各种对象;然而,视觉模型的成功取原创 2022-11-06 11:28:39 · 1447 阅读 · 10 评论 -
【Pytorch Lighting】第 5 章:时间序列模型
如果缺失值是间歇性的,则大多数数据插补技术都有效,例如 2013 年至 2014 年或 2016 年至 2018 年的情况,但对于 2014 年至 2015 年的流量,它们将失败。在本节中,我们将尝试预测 94 号州际公路的交通量,Uber、Lyft 和/或谷歌地图等拼车公司可以使用它来预测两个司机的交通量和到达目的地所需的时间和拼车客户。它是在使用天气数据历史的时间序列预测模型的帮助下完成的。我们可以在温度统计中观察到,我们数据集中的最低温度为 0 开尔文,这是不可能的,因此我们需要处理这些异常值。原创 2022-11-06 11:27:09 · 1375 阅读 · 6 评论 -
【Pytorch Lighting】第 4 章:Lightning Flash 中的即食模型
构建() 模型通常涉及从该领域的顶尖研究论文中重新创建现有架构或实验。例如,的获奖() 架构计算机视觉挑战。许多数据科学家已经为他们的业务应用程序重新创建了该架构,或者基于它构建了更新更好的算法。在进行自己的实验之前,对数据重复使用现有实验是一种常见的做法。这样做通常涉及阅读原始研究论文以对其进行编码,或者访问作者的 GitHub 页面以了解什么是什么,这都是耗时的选择。如果 DL 中最流行的架构和实验可以很容易地用于执行各种常见的 DL 任务作为框架的一部分呢?认识 PyTorch Lighting!原创 2022-11-06 08:32:54 · 815 阅读 · 6 评论 -
【Pytorch Lighting】第 3 章:使用预训练模型进行迁移学习
您可能需要进行完整的培训选择。我们将使用一种流行的称为 ResNet-50 的 CNN 架构来构建我们的图像分类器,然后使用另一种称为 BERT 的重磅变压器架构来构建一个文本分类器。迁移学习是一种帮助我们利用从先前构建的模型中获得的知识的技术,该模型是为与我们的任务类似的任务而设计的。在进行迁移学习时,重要的是冻结现有层的权重以避免反向传播和重新训练,因为我们将利用现有的训练模型。准备数据的过程可能涉及加载数据、拆分数据、转换、特征工程和许多其他活动,以提供更好的结果,更重要的是,被模型接受。原创 2022-11-05 18:27:07 · 2173 阅读 · 3 评论 -
【Pytorch Lighting】第 2 章:第一个深度学习模型起步
解决这个问题的一种方法是不要从头开始训练 DL 模型,而是使用来自这些大模型训练的模型的信息并将其转移到我们的模型中。CNN 的成功在于它们在规模方面的灵活性,只需添加更多硬件,然后在规模越大的准确性方面提供出色的性能。无论预测工作的好坏,模型的每次迭代都会对错误进行惩罚。一旦您接受它,您的驱动器将被挂载,您可以访问存储在永久存储中的任何数据,即使在会话到期后,您也可以继续您的工作,而无需再次下载、下采样和拆分数据。在本节中,我们将构建一个简单的数据加载器,它具有输入和目标,并将在训练我们的模型时使用它。原创 2022-11-05 07:37:42 · 928 阅读 · 9 评论 -
【Pytorch Lighting】第 1 章:PyTorch Lightning adventure
() 驱动的被普遍称为第四次工业革命)。自从大约 350 年前创造了蒸汽机以来,人类走上了工业化道路,我们看到了另外两次工业革命。大约 100 年前,我们看到电力带来了翻天覆地的变化,大约 50 年后,数字时代彻底改变了我们今天的生活方式。人工智能同样具有变革性的力量。我们所知道的关于世界的一切都在快速变化,并将继续以前所未有的速度发生变化,当然也没有人计划过。随着人工智能聊天机器人的出现,我们看到了我们联系客户服务的方式发生了变革;在我们如何观看电影/视频方面,AI 会推荐我们应该观看的内容;原创 2022-11-05 07:37:23 · 680 阅读 · 9 评论