AI and ML for Coders
文章平均质量分 95
您将了解如何实现机器学习中最常见的场景,例如计算机视觉、自然语言处理 (NLP) 以及 Web、移动、云和嵌入式运行时的序列建模。大多数关于机器学习的书籍都是从大量令人生畏的高等数学开始的。本指南以实践课程为基础,可让您直接使用代码。
Sonhhxg_柒
Save your heart for someone who cares. #愿岁月清净 抬头遇见皆是柔情#
展开
-
【AI with ML】第 14 章 :在 iOS 应用程序中使用 TensorFlow Lite
如您所见,尽管这是一个更复杂的示例,但相同的设计模式仍然适用。虽然这是一个极其简单的场景,并且对于机器学习应用程序来说绝对是矫枉过正,但骨架结构与用于更复杂应用程序的骨架结构相同,而且我发现它是演示如何在应用程序中使用模型的一种有用方式。在本节中,您将了解如何使用经过训练的模型在 Swift 中创建 iOS 应用程序,给定一张猫或狗的图像,该模型将能够推断出图片中的内容。在 Dogs vs. Cats 的情况下,您有一个包含两个值的浮点数组作为输出,第一个是图像是猫的概率,第二个是它是狗的概率。原创 2022-12-20 22:34:35 · 1838 阅读 · 14 评论 -
【AI with ML】第 13 章 :在 Android 应用程序中使用 TensorFlow Lite
对于如此简单的功能来说,这实在是太过分了,但是像这样的应用程序的脚手架几乎与复杂得多的应用程序的脚手架相同。最重要的是,您看到了将基于 Android 的数据(例如图像或数字)转换为模拟模型中使用的张量的输入数组的需要,以及如何解析输出数据,意识到它也是有效的内存映射张量在。您必须创建转换器以根据神经网络期望数据输入的方式重新格式化您的数据,并且您必须了解神经网络使用的输出模式,以便您可以解析结果。中,您构建了一个 Dogs vs. Cats 模型,该模型允许您输入猫或狗的图像,并得出推论。原创 2022-12-20 11:10:28 · 1698 阅读 · 16 评论 -
【AI with ML】第 12 章 :TensorFlow Lite 简介
在本章中,您了解了 TensorFlow Lite 的介绍,并了解了它是如何设计用来让您的模型准备好在比您的开发环境更小、更轻的设备上运行的。使用 TensorFlow,您可以直接说出并获得结果,但由于 TensorFlow Lite 没有 TensorFlow 所具有的许多依赖项,尤其是在非 Python 环境中,您现在必须获得更底层的信息并处理输入并输出张量,格式化您的数据以适合它们并以对您的设备有意义的方式解析输出。一个适合移动设备的框架将需要帮助您进行这样的权衡,并在必要时为您提供转换模型的工具。原创 2022-12-19 16:44:01 · 1395 阅读 · 16 评论 -
【AI with ML】第 11 章 :对序列模型使用卷积和递归方法
在这种情况下,序列中的第一个值将丢失,第二个值将从 8 转换为 –1.5,值得注意的是,RNN 有一个内部循环,它迭代序列的时间步长,同时保持它目前看到的时间步长的内部状态。同样重要的是要记住我们对数据进行了标准化,因此虽然我们的损失和 MAE 可能看起来很低,但这是因为它们基于标准化值的损失和 MAE,这些标准化值的方差比真实值低得多。正如您在本章中看到的,使用神经网络预测时间序列数据是一个困难的命题,但调整它们的超参数(特别是使用 Keras Tuner 等工具)可能是改进模型及其后续预测的有效方法。原创 2022-12-18 15:18:06 · 1519 阅读 · 10 评论 -
【AI with ML】第 10 章 :创建 ML 模型以预测序列
我将留给您进行试验,但在下一节中,您将对优化器进行一些基本的超参数调整,以改进神经网络的学习方式,并查看这将对 MAE 产生什么影响。然后,您可以使用它来参数化您的超参数,指定要测试的值范围。例如,如果您想要预测时间步长 1,020 的值,您可以获取时间步长 1,000 到 1,019 的值,并使用它们来预测序列中的下一个值。如果你可以让你的数据集进入这样一种情况,你有一定数量的值作为特征,下一个作为标签,并且你对数据集中的每个已知值都这样做,你最终会得到一组相当不错的可用于训练模型的特征和标签。原创 2022-12-17 10:13:02 · 1737 阅读 · 9 评论 -
【AI with ML】第 9 章 :了解序列和时间序列数据
它是逐周绘制的,您可以看到有规律的下降。这是对 TensorFlow 的一个很好的突破,但在下一章中,您将返回使用 TensorFlow 和 ML,看看是否可以改进您的预测!虽然这个时间序列是人为创建的(您将在本章后面看到如何创建),但它具有复杂的现实世界时间序列的所有属性,如股票图表或季节性降雨。通常在时间轴上绘制多个值,例如在这个例子中,晶体管的数量是一个图,摩尔定律的预测值是另一个图。自相关可能隐藏在时间序列模式中,但它们具有内在的可预测性,因此包含许多自相关的时间序列可能是可预测的。原创 2022-12-17 10:12:42 · 1813 阅读 · 10 评论 -
【AI with ML】第 8 章 :使用 TensorFlow 创建文本
如果在训练数据中你也有“昨天有美丽的蓝天”,以同样的方式分割,你要得到对文本“明天会有美丽的蓝天”的预测,那么下一个很可能是单词将是“天空”。当使用与之前相同的短语进行测试时,这次我以 51% 的概率得到了“in the town of athy”之后的“more”作为下一个词,而在“sweet jeremy saw dublin”之后我得到了“cailín”(盖尔语“女孩”一词)的概率为 61%。,它完全由基于 LSTM 的网络编写,就像您在这里构建的网络一样,受过科幻电影剧本的训练。原创 2022-12-16 10:16:55 · 1192 阅读 · 10 评论 -
【AI with ML】第 7 章 :用于自然语言处理的递归神经网络
本章向您介绍了循环神经网络,它在设计中使用面向序列的逻辑,不仅可以根据句子包含的单词,还可以根据它们出现的顺序来帮助您理解句子中的情绪。例如,从情感的角度来看,“蓝色”这个词可能毫无意义,“天空”也可能毫无意义,但是当你将它们放在一起得到“蓝天”时,就会有一种明确的情感,通常是积极的。这意味着“今天我是蓝色的,因为天空是灰色的”和“今天我很高兴,那里有美丽的蓝天”等句子中的“蓝色”和“天空”这两个词没有不同的含义。对我们来说,使用这些词的区别是显而易见的,但对于一个模型来说,这里显示的架构确实没有区别。原创 2022-12-16 10:15:51 · 1654 阅读 · 10 评论 -
【AI with ML】第 6 章 :使用嵌入使情绪可编程
使用这些超参数,验证集的损失在大约第 60 个时期开始增加,此时训练集的准确度为 90%,验证集的准确度约为 81%,表明我们拥有一个非常有效的网络。在我们的例子中,虽然计算机不理解单个词的含义,但它可以将已知讽刺标题中的标记词朝一个方向移动(通过加 1),并将来自已知正常标题的标记词朝另一个方向移动(通过减去 1 ). 这使我们对单词的含义有了基本的理解,但确实失去了一些细微差别。然后,当给定一个句子时,您可以调查词向量的方向,将它们相加,并从总和的总体方向将句子的情感建立为其词的乘积。原创 2022-12-15 10:32:08 · 1335 阅读 · 9 评论 -
【AI with ML】第 5 章 :自然语言处理简介
在 NLP 的情况下,您的训练数据中可能有数千个单词,用于许多不同的上下文,但您不可能在每个可能的上下文中都有每个可能的单词。它通常是非结构化的,可能包含格式说明等不需要的内容,并不总是包含您想要的内容,并且通常必须进行过滤以删除无意义或不相关的内容。然而,总有改进的余地,我在查看完整索引时注意到的一件事是,最后一些不太常见的词是荒谬的。对于文本,你会面临同样的问题——一旦你标记了你的单词并将你的句子转换成序列,它们的长度都可能不同。在接下来的几章中,您将使用我改编自的 Twitter 数据的 CSV。原创 2022-12-15 09:24:02 · 1440 阅读 · 11 评论 -
【AI with ML】第 4 章 :使用公共数据集和TensorFlow 数据集
因此,在您可以使用 GPU 或 TPU 的情况下,您应该理想地在 CPU 和 GPU/TPU 之间分配工作负载,Extract 和 Transform 发生在 CPU 上,而 Load 发生在 GPU/TPU 上。在本书的第一章中,您使用各种数据训练了模型,从方便地与 Keras 捆绑在一起的 Fashion MNIST 数据集到基于图像的 Horses or Humans and Dogs vs. Cats 数据集,这些数据集以 ZIP 文件形式提供,您拥有下载和预处理。批次所花费的时间并不总是相同的。原创 2022-12-14 16:30:22 · 1607 阅读 · 9 评论 -
【AI with ML】第 3 章 :超越基础知识:检测图像中的特征
在第 2 章中你学到了如何通过创建一个简单的神经网络开始使用计算机视觉,该神经网络将 Fashion MNIST 数据集的输入像素与 10 个标签相匹配,每个标签代表一种类型(或类别)的服装。虽然您创建了一个非常擅长检测服装类型的网络,但存在一个明显的缺点。你的神经网络是在单色小图片上训练的,每张图片只包含一件衣服,而且那件衣服位于图片。 要使模型更上一层楼,您需要能够检测图像中的特征。因此,举例来说,如果我们有办法将图像过滤成组成元素,而不是仅仅查看图像中的原始像素,会怎样?匹配这些元素而不是原始像素,将原创 2022-12-14 09:48:14 · 1393 阅读 · 9 评论 -
【AI with ML】第 2 章 :计算机视觉简介
在本章中,您将其提升到了一个新的水平,超越了单个神经元,并学习了如何创建您的第一个(非常基础的)计算机视觉神经网络。这是很常见的,当您考虑它时,它是有道理的:神经网络只真正知道如何将其训练的输入与这些值的输出相匹配。我们希望,只要有足够的数据,它就能从它看到的例子中进行概括,“学习”鞋子或裙子的样子。所以现在当我们训练我们的神经网络时,目标是我们可以输入一个 28 × 28 像素的数组,中间层的神经元将具有权重和偏差(m 和 c 值),当它们组合在一起时会将这些像素匹配到10 个输出值之一。原创 2022-12-13 19:06:01 · 1117 阅读 · 10 评论 -
【AI with ML】第 1 章 :TensorFlow 简介
前我们了解了 ML 的来龙去脉,让我们考虑一下它是如何从传统编程演变而来的。我们将从检查什么是传统编程开始,然后考虑它受限的情况。然后我们将看到 ML 如何发展以处理这些情况,并因此开辟了实施新场景的新机会,解锁了许多人工智能的概念。传统编程涉及我们编写以编程语言表达的规则,这些规则作用于数据并给我们答案。这几乎适用于任何可以用代码编程的地方。例如,考虑一款像流行的 Breakout 这样的游戏。代码决定了球的运动、比分以及比赛输赢的各种条件。想一想球从砖块上弹回的场景,如图1-1所示。图 1-1。原创 2022-12-13 16:40:15 · 2146 阅读 · 8 评论