使用 BERT 的问答系统
文章平均质量分 93
问答系统彻底改变了信息检索。Transformer 的双向编码器表示 (BERT) 等技术使机器学习系统可以分析文档并通过问答机制检索上下文信息,而无需大量培训。深度学习的发展对问答系统的设计产生了巨大影响,并使这些系统能够吸收大量数据并建立数十亿个连接以更好地理解人类语言。
Sonhhxg_柒
Save your heart for someone who cares. #愿岁月清净 抬头遇见皆是柔情#
展开
-
【使用 BERT 的问答系统】第 7 章 :BERT 模型的未来
其背后的原因是 BERT 模型是在 MLM 上训练的,而不是在自回归上训练的。因此,研究人员已经确定,他们可以将学习从在正确翻译的平行语料库上训练的模型转移到识别翻译是否正确的任务。RoBERTa 使用 160 GB 的数据进行预训练,其中包括未注释的 NLP 数据集和从称为 CC-News 数据集的公共新闻文章中删除的数据。与在 BookCorpus 和维基百科上训练的微调 BERT 相比,在下游 NLP 任务上进行微调时,在特定领域的语料库上进行训练已被证明是有用的并且会产生更好的性能。原创 2022-12-03 09:03:50 · 1101 阅读 · 5 评论 -
【使用 BERT 的问答系统】第 6 章 :BERT 模型应用:其他任务
因此,作为最佳实践,文档摘要系统应该仅用作后端应用程序或具有父系统(例如搜索引擎)的系统,其中作为搜索结果的一部分返回的每个文档也应该具有文档摘要。它的工作原理是生成句子的嵌入,然后使用聚类算法(例如基于密度的算法等)对最接近质心的句子进行聚类,形成一个高度密集的区域。换句话说,摘要应该与文档所说的非常相似。在这个数据集中,实体被标注了 18 个类别,例如组织、艺术作品、单词中的数字、数字、数量、人物、位置、地缘政治实体、时间、日期、设施、事件、法律、国籍或宗教或政治团体,语言、货币、百分比和产品等。原创 2022-12-03 09:03:00 · 1895 阅读 · 5 评论 -
【使用 BERT 的问答系统】第 5 章 :BERT模型应用:问答系统
如果您的系统没有足够的可用资源,它提供了一个快速且免费的环境来运行您的 Python 代码。它是信息检索和 NLP 领域计算机科学学科的一部分,专注于构建系统,自动提取人类或机器以自然语言提出的问题的答案。此类系统的一个示例是 DeepPavlov ODQA 系统,它是 MIPT 开发的一种 ODQA,它使用来自维基百科的大量文章数据集作为其知识来源。接下来,我们看看如何使用 DeepPavlov 来实现基于上下文的问答系统,其中问题的答案存在于上下文中。例如,请考虑维基百科文章中的以下上下文和问题。原创 2022-12-02 08:00:55 · 5317 阅读 · 11 评论 -
【使用 BERT 的问答系统】第 4 章 :BERT 算法详解
本章深入探讨用于句子嵌入的 BERT 算法以及各种训练策略,包括 MLM 和 NSP。我们还将看到使用 BERT 的文本分类系统的实现。BERT 是如何工作的?BERT 使用转换器来学习文本中单词之间的上下文关系。Transformer 有两种机制——编码器和解码器——但 BERT 只需要编码器机制。BERT 使用双向方法并按顺序读取文本输入,这使模型可以根据单词周围的单词来学习单词的上下文。编码器的输入是嵌入到向量中的一系列标记。然后将向量传递到神经网络,然后生成对应于输入的向量输出序列。原创 2022-12-01 16:02:24 · 1385 阅读 · 5 评论 -
【使用 BERT 的问答系统】第 3 章 :词嵌入介绍
文档分类、情感分析、聚类和文档摘要等 NLP 任务需要处理和理解文本数据。这些任务的实施取决于人工智能系统如何处理和理解数据。一种方法是使用一些统计方法将文本表示转换为数字形式,例如词频-逆文档频率(TF-IDF)、计数向量等,但这些方法不考虑句子的含义并且只处理句子中单词的出现。随着时间的推移,已经开发了多种语义方法,例如解析树、上下文语法、本体等,但是这些方法需要大量的人力来准备标记的训练数据。在过去几年中,计算能力的广泛可用性使得使用基于神经网络的方法来完成这些任务成为可能。原创 2022-12-01 08:25:17 · 3979 阅读 · 5 评论 -
【使用 BERT 的问答系统】第 2 章 :用于自然语言处理的神经网络
将人类认知智能(即思考、推理和行动)带入人工系统一直是研究人员的热门话题。在这个过程中,他们提出了神经网络的想法,试图模拟人脑神经元的工作方式。尽管它们离人类的认知能力还有很远的距离,但人工神经网络在 ML 领域占据着非常有前途的地位,并且已经改变了 NLP 应用程序的开发方式。在本章中,我们将讨论神经网络及其类型,以及一些特殊类型的神经网络,例如长短期记忆 (LSTM)、卷积神经网络 (CNN)、编码器、解码器和转换器。这将为我们转向更高级的 NLP 主题奠定基础,并研究 NLP 的最新技术水平现在如何在原创 2022-12-01 08:25:16 · 1515 阅读 · 9 评论 -
【使用 BERT 的问答系统】第 1 章 : 自然语言处理简介
随着最近技术的进步,通信是出现革命性发展的领域之一。通信和信息构成了现代社会的支柱,正是语言和通信导致了人类知识在各个领域的这种进步。人类一直对机器或机器人具有类似人类的能力来用我们的语言进行交谈的想法着迷。许多科幻书籍和媒体都讨论过这个话题。图灵测试就是为此目的而设计的,以测试人类是否能够破译通信通道另一端的实体是人还是机器。对于计算机,我们从计算机可以解释的二进制语言开始,然后根据指令进行计算。原创 2022-11-30 13:32:46 · 2095 阅读 · 9 评论