国内此方面的理论性研究很少,自从去年开始接触可视化以来,至今感觉未入门,近日拿到一本新书,从头开始看,作为读书笔记,由于是E文的书籍,我这边的笔记都是中文,过程中难免出现不准确的理解,如果有类似研究和学习的朋友可以一起来学习,互相提高。
1.
1.1
1. 科学可视化的典型算法是把数据从一种形式转换成另外一种形式(比如维度上的转换)。
2. 转换数据形式的算法是数据可视化的核心。
3. 从转换的结构和类型来对可视化进行归类:
转换的结构的意思是指转换是在拓扑或者几何数据集合上进行的。
转换的类型的意思是算法操作的数据集合的类型。
4. 按照转换结构的分类,又分为四种:
l 几何转变:不改变本来的拓扑结构(比如放大和缩小等)
l 图片谱转变:修改拓扑结构,但是不改变属性(比如把折线的数据变成表格来展示)
l 属性转变:把数据属性从一种转换成别的,但是数据结构不受影响(比如通过显存数据的属性产生判断出来别的另外的属性)
l 混合转变:同时转遍了数据集合的结构和数据属性
5. 按照转换类型分类:
l 标量算法:操作在标量数据上的算法(比如在天气预报图上画出温度的轮廓线)
l 向量算法:操作在想梁上的算法(比如画出空气流动的箭头方向和大小)
l 张良算法:操作在张量上的算法(比如画出某种材料上受压力的不同的各个部分,用不一样的图标展示出来)
l 建模算法:把数据集合生成拓扑或者几何图形。
1.1.1
讨论专用算法和通用算法(在通用性和有效性这两个方面上)
1. 专用算法通常比通用算法的速度更快。
1.1.2
作为过滤器的算法
1. 早起一些可视化工具实在抽象数据流基础上的,并且处理分为数据部分和处理部分,处理部分其实就是过滤器。
1.2
标量算法
1. 标量是只有大小没有方向的量(比如点,或者细胞的数据集合)。
1.2.1
颜色映射
1. 颜色映射是一种常见的标量可视化技术,它把标量映射为颜色,使用标准的颜色和阴影修饰的图形库。他首先利用一个颜色对照表,然后把标量数据作为索引,从对照表中找到对应的颜色,映射过程大概如下:
该表维持了一个颜色数组(里面有红色,绿色等颜色数据),并且有数组饿最小值索引和最大值索引,分别为min和max。若标量数据小于min,则强制设置0,如果大于max则设置为n-1,然后根据n的值取对照表中的对应索引的颜色。
2. 这种查找表的另外一种叫法被成为:传递函数
l 传递函数就是把标量映射为颜色具体说明的一个表达式
l 颜色对照表是一种简单常见的传递函数
3. 对于标量的颜色映射可视化的关键是仔细地选择查找表实体(就是用哪个颜色对照表,或者说用什么颜色来映射当面的标量数据)
4. 仔细地选择颜色能够增强数据集合的重要特征,但是任何的颜色对照表都会夸大不重要的或者我们本来不想要的细节。这是因为数据之间存在不可预测的相互作用、颜色选择以及人们生理上的一些特征
5. 颜色对照表的设计很重要(常见的一个描述温度的,blue表示低温,red表示高温)