由于学习需要,读研两年来基本基本没再接触过线代、概率统计、高数这些知识了,最近由于学习需要,才把线代的大学本科时候用的书前后花费了2周左右给复习完了。复习完之后发现只是勾起了一些当年的印象,并不咋深入,有些课后习题还是不会做。导致看一些paper的时候遇到个公式还要思考大半天才反应过来,果断觉得重新再来一遍,本来这种东西年代久远没再复习一遍也就不够用。
第二次就没再按照课本一章一章的来,下载了一个学校内网上有的一个考研的线代的视频,清华大学的我看是03年考研时候的吧,老师讲的还不错,第一章开始就把整本书给穿起来了,我就喜欢这样子的,要不自己看完书觉得一大堆,如果不找点规律来串起来根本就回丢东往西,并且不会融会贯通,不能学以致用啊。
由于这位老师开头的一些讲的很不错,因为我们大家用的线性代数课本都差不多吧,都是从行列式开始,然后是矩阵接着是向量,之前书本这么安排都不怎么明白,如今一下子就给穿起来了:
线性代数以行列式、矩阵向量为工具研究线性方程、线性空间以及变换。开始介绍的行列式是n*n的来解向量组,如果换成m*n,那么用行列式的概念就不够来解这个equation了,接着引入了矩阵matrix,就可以解决了,使用高斯消元法。如果方程组有无穷解,那么解之间的关系是什么样子?这个时候引入了向量vector的概念。
虽然短短几句话,但是把一本书的顺序真的给穿起来了,大脑中一下子就有了很清晰的概念了。。