自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 Self-Attention和Transformer

文章目录广义注意力机制模型Self-AttentionTransformer模型Transformer中Self-Attention层的实现step1:step2:step3step4Step5:Step6:Decoder中的Encoder-Decoder Attention Layer广义注意力机制模型最初Attention机制的引入,为了解决机器翻译中将长序列向定长向量转化而造成的信息损失的瓶颈。Attention即将注意力关注于翻译部分对应的上下文。关键的操作是计算encoder与decod

2021-02-04 15:53:29 379

翻译 全景分割文章(三)

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例

2021-02-04 15:52:03 568

翻译 全景分割文章(二)

全景分割文章贡献总结(二)阅读两篇全景分割文献《Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation》,《An End-to-End Network for Panoptic Segmentation》。文章目录全景分割文章贡献总结(二)《Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation》主要贡献创新思想《An End-to-End

2021-02-04 15:50:20 361

翻译 阅读《Enhancing Foreground Boundaries for Medical Image Segmentation》

《Enhancing Foreground Boundaries for Medical Image Segmentation》针对分割边界问题,可提升边界的分割质量。文章目录《Enhancing Foreground Boundaries for Medical Image Segmentation》前言主要实现总结前言文章提出了一个边界增强损失,以进一步提高边界区域的分割质量。并且所提出的损失函数轻量、易实现且无需任何前处理或后处理。思路为将拉普拉斯滤波器L(·)(见下式)应用到分割Mask

2021-02-04 15:43:46 333

翻译 YOLACT++主要工作总结

YOLACT++主要工作总结文章目录YOLACT++主要工作总结摘要文章主要工作可能存在的问题总结摘要论文:https://arxiv.org/abs/1912.06218摘要:我们为实时(> 30 fps)实例分割提供了一个简单的全卷积模型,该模型在单个Titan Xp上评估的MS COCO上取得了SOTA结果,这比以前的任何最新的方法都快得多。此外,我们仅在一个GPU上训练后即可获得此结果。我们通过将实例分割分为两个并行的子任务来完成此任务:(1)生成一组原型(prototype) ma

2021-01-27 21:08:05 1193

原创 Cityscapes数据集与COCO数据集

Cityscapes数据集与COCO数据集对两个公开数据集的简要概述。文章目录Cityscapes数据集与COCO数据集CItyscapes数据集COCO数据集info字段images字段license字段categories字段annotation字段总结CItyscapes数据集Cityscapes是关于城市街道场景的语义理解图片数据集,它主要包含来自50个不同城市的街道场景,拥有5000张在城市环境中驾驶场景的高质量像素级注释图像(其中2975 用来训练,500用来验证,1525用来测试,共

2021-01-26 22:09:34 1384 1

原创 调研目标检测相关综述,总结目标检测主要框架

One stage与Two stageOne-stage:直接回归物体的类别概率和位置坐标值,没有生成Region Proposal(RP)的任务,整个训练过程只有一个Stage。特点:速度相对较快,但是精度相对于Two-stage较低。Two-stage:先由算法生成一系列作为样本的候选框(RP),再由卷积神经网络进行样本分类。训练两个部分,第一步是训练RP网络,第二步是训练目标区域检测的网络。因此有两个Stage。特点:网络的精度相对较高,速度相对于One-stage较慢。

2021-01-26 22:07:08 314

翻译 分割综述文章《Understanding Deep Learning Techniques for Image Segmentation》小结

阅读图像分割综述文章《Understanding Deep Learning Techniques for Image Segmentation》总结现有常用分割算法。文章目录阅读图像分割综述文章《Understanding Deep Learning Techniques for Image Segmentation》总结现有常用分割算法。语义分割实例分割三种分割问题(语义,实例,全景)1.弱监督和无监督模型2.交互式分割3.建立更有效的网络总结语义分割FCN存在问题:中间采样操作造成的图

2021-01-26 22:03:43 786 1

翻译 全景分割文章

全景分割2篇文章贡献总结本文阅读了何恺明关于全景分割《Panoptic Segmentation》以及全景分割论文《Panoptic-DeepLab: A Simple Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation》,总结了两篇文章的突出贡献。文章目录全景分割2篇文章贡献总结《Panoptic Segmentation》度量准则实例匹配原则在三个数据集上研究人和机器的表现,最后希望在两个领域推动全景分割算法的进展《Panop

2021-01-26 22:01:04 486

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除