Cityscapes数据集与COCO数据集
对两个公开数据集的简要概述。
文章目录
Cityscapes数据集
Cityscapes是关于城市街道场景的语义理解图片数据集,它主要包含来自50个不同城市的街道场景,拥有5000张在城市环境中驾驶场景的高质量像素级注释图像(其中2975 用来训练,500用来验证,1525用来测试,共有19个类别)。样本数据都在gtFine文件夹和leftlmg8bit文件夹内。leftImg8bit文件夹有三个子目录:test,train以及val。这三个子目录的图片又以城市为单元来存放。gtFine下面也是分为train,test以及val,不同的是,在城市子目录下面,每张样本图片对应有6个标注文件,如下所示:
xxx_instanceIds.png是用来做实例分割训练用的,而xxx_labelsIds.png是语义分割训练需要的。它们的像素值就是class值。而最后一个文件xxx_polygons.json是用labelme工具标注后所生成的文件,里面主要记录了每个多边形标注框上的点集坐标。xxx_gtFine_instanceTrainIds.png和xxx_gtFine_labelTrainIds.png是生成的实际上这5000张精细标注的图片有34类,但训练时可能只想关心其中19类(0~18)。所以需要做一个映射来将34类中感兴趣的类别映射到19类中,其它不感