调研目标检测相关综述,总结目标检测主要框架

One stage与Two stage

  • One-stage:
    • 直接回归物体的类别概率和位置坐标值,没有生成Region Proposal(RP)的任务,整个训练过程只有一个Stage。
    • 特点:速度相对较快,但是精度相对于Two-stage较低。
  • Two-stage:
    • 先由算法生成一系列作为样本的候选框(RP),再由卷积神经网络进行样本分类。训练两个部分,第一步是训练RP网络,第二步是训练目标区域检测的网络。因此有两个Stage。
    • 特点:网络的精度相对较高,速度相对于One-stage较慢。


目标检测算法框架

一、传统检测方法

1.Viola Jones Detectors

结合了 “ 积分图像 ”、“ 特征选择 ” 和 “ 检测级联 ” 三种重要技术,大大提高了检测速度。

2.HOG Detector

尺度不变特征变换和形状上下文的重要改进,若要检测不同大小对象,需对输入图像重新标度。

3.Deformable Part-based Model

一个根过滤器(root-filter)和一些零件滤波器(part-filters)组成,开发了一种弱监督学习方法,所有零件滤波器的配置都可以作为潜在变量自动学习。

二、深度学习框架(Two stage)

1.RCNN

  • 选择性搜索,提取一组对象建议,然后调整成相同图案大小,然后输入CNN模型提取特征,最后用线性SVM对每个区域目标进行预测
  • 缺点:在大量重叠的提案上进行冗余的特征计算,导致检测速度极慢。

2.多尺度网络

  • PSPNet,建立在FCN基础上的像素级分类网络。
  • RefineNet,细化中间激活映射并将其分层连接,组合多尺度激活防止锐度损失。

3.SPPNet (空间金字塔池化网络)

  • 能够生成固定长度的表示,而不需要重新缩放图像/感兴趣区域的大小。进行目标检测时只对整个图像进行一次特征映射计算,然后生成任意区域的定长表示,训练检测器,避免了卷积特征的重复计算。
  • 缺点:训练仍然是多阶段的,只对其全连接层进行微调,而忽略了之前的所有层。

4.Fast RCNN

  • 成功地融合了 R-CNN 和 SPPNet 的优点,能够在相同的网络配置下同时训练检测器和边界框回归器。
  • 缺点:检测速度仍然受到提案/建议检测的限制。

5.Faster RCNN

  • 引入了区域建议网络 ( RPN ),使几乎 cost-free 的区域建议成为可能,目标检测系统大部分独立块,如提案检测、特征提取、边界框回归等,都已经逐渐集成到一个统一的端到端学习框架中。
  • 缺点:后续的检测阶段仍然存在计算冗余。

6.Feature Pyramid Networks(FPN)

  • 开发了具有横向连接的自顶向下体系结构,用于在所有级别构建高级语义。在检测各种尺度的目标方面显示出了巨大的进步。

三、深度学习框架(One stage)

1.You Only Look Once (YOLO)

  • 将单个神经网络应用于整个图像。该网络将图像分割成多个区域,同时预测每个区域的边界框和概率。
  • 缺点:与两级探测器相比,它的探测速度有了很大的提高,但是YOLO的定位精度有所下降,特别是对于一些小目标。

2.Single Shot MultiBox Detector (SSD)

  • 引入了多参考和多分辨率检测技术 ,在网络的不同层检测不同尺度的对象,大大提高了单级检测器的检测精度,特别是对于一些小目标。

3.RetinaNet

  • 密集探测器训练过程中所遇到的极端的前景-背景阶层不平衡是单级检测器精度落后的主要原因。引入了一个新的损失函数 “ 焦损失(focal loss)”,通过对标准交叉熵损失的重构,使检测器在训练过程中更加关注难分类的样本。

思维导图如下所示

在这里插入图片描述在这里插入图片描述在这里插入图片描述

总结

本文基于目标检测综述文章,简单罗列了一部分应用较为广泛的框架。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值