防止过拟合和欠拟合的方法

本文探讨了防止过拟合和欠拟合的多种策略,包括使用earlystop、增加验证集、增大数据集、正则化、dropout等方法来避免过拟合;通过添加特征、组合多项式特征、减少正则化参数等手段来解决欠拟合问题。
摘要由CSDN通过智能技术生成

防止过拟合

  1. Early stop。增加验证集,验证集性能没有明显提升的时候停止。
  2. 增大数据集。常见的是增加一些噪声构造新样本,重采样,从源头采集,以及分析数据分布构造更多假数据。
  3. 正则化。为了降低模型复杂度,避免过分拟合训练数据,包括噪声和异常点。
  4. dropout。随机丢弃一些神经元,避免过度赖某些数据特征。

防止欠拟合

  1. 添加其他特征
  2. 添加多项式特征组合
  3. 减少正则化参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值