防止过拟合 Early stop。增加验证集,验证集性能没有明显提升的时候停止。增大数据集。常见的是增加一些噪声构造新样本,重采样,从源头采集,以及分析数据分布构造更多假数据。正则化。为了降低模型复杂度,避免过分拟合训练数据,包括噪声和异常点。dropout。随机丢弃一些神经元,避免过度赖某些数据特征。 防止欠拟合 添加其他特征添加多项式特征组合减少正则化参数