在深度学习中,过拟合和欠拟合是训练神经网络时常遇到的两个问题。这两个问题会严重影响模型的泛化能力和性能。本文将从基础概念入手,逐步深入,详细探讨解决这两个问题的几种方法。
1. 什么是过拟合和欠拟合?
过拟合和欠拟合描述的是模型对训练数据和测试数据的拟合程度。
-
过拟合:模型在训练数据上表现非常好,但在测试数据上表现较差。这是因为模型过度学习了训练数据中的噪声和细节,导致泛化能力下降。
数学上,假设训练数据的损失函数为 L t r a i n L_{train} Ltrain,测试数据的损失函数为 L t e s t L_{test} Ltest,过拟合表现为:
L t r a i n ≪ L t e s t L_{train} \ll L_{test} Ltrain≪Ltest
-
欠拟合:模型在训练数据和测试数据上都表现不好。这是因为模型过于简单,无法捕捉数据的复杂模式。
数学上,欠拟合表现为:
L t r a i n ≈ L t e s t 且 L t r