微软研究院的研究人员开发了大气基础模型“Aurora”,https://arxiv.org/abs/2405.13063v1
利用超过一百万小时的多样化天气和气候数据进行训练,能够预测各种大气条件,包括数据有限、变量异构和极端事件,并在全球空气污染和高分辨率天气模式预测方面表现出色,超越了现有模拟工具。
论文介绍
深度学习基础模型彻底改变了蛋白质结构预测、药物发现、计算机视觉和自然语言处理等领域。它们依靠预训练从不同的数据中学习复杂的模式,并通过微调以有限的数据在特定任务中表现出色。地球系统由大气、海洋、陆地和冰等相互关联的子系统组成,需要在不断变化的气候中进行准确建模。基础模型有可能彻底改变这些子系统和整个地球的建模方式。大气层拥有特别丰富的数据,是预训练基础模型的理想选择。传统的数值天气预报 (NWP) 模型成本高昂,并且在处理大型数据集时效率低下。最近的深度学习方法更具成本效益且更加灵活,在具有丰富数据的特定预测任务中显示出前景。然而,它们在处理稀疏或异构数据方面存在困难,并且在预测极端事件方面缺乏稳健性。基础模型通过从不同数据中学习可泛化的表示,可以潜在地解决这些挑战,正如在其他领域所证明的那样。
来自 Microsoft Research AI for Science、Microsoft Corporation、JKU Linz、University of Cambridge、Poly Corporation 和 University of Amsterdam 的研究人员推出了 Aurora,这是一种用于大气层的基础模型。Aurora 可以预测各种大气条件,包括数据有限、变量异构和极端事件的情况。Aurora 可以生成全球空气污染和高分辨率天气模式的业务