2022年1月19日,北京冬奥组委发布公告称,冬奥会“场馆仿真系统”名列奥运经济遗产分册中“科技冬奥”板块第三类首位。该系统正是基于数字孪生模型,奥林匹克广播服务公司(OBS)主席雅尼斯先生称其为“拥抱未来的技术”。
基于该系统,奥组委可以远程对场馆内的设置提出修改意见,减少实地勘查的时间成本;奥运转播团队可以直接通过模拟拍摄角度选择合适的机位;冬奥会运动员们无需来到现场就能选择自己心仪的房间,提前看现场,甚至模拟训练……
巴黎奥运会场馆全面实现数字孪生
2024年巴黎奥运会,几乎所有场馆都创建了数字孪生,以优化赛事规划。
数据源标准化是确保数字孪生系统有效运作的关键步骤。由于数字孪生依赖于来自多种来源的数据,包括传感器、CAD模型、GIS数据等,因此必须对数据进行标准化处理,以保证数据的互操作性和一致性。数据源标准化有助于简化数据集成过程,提高数据质量,确保数字孪生模型的准确性和可靠性。数据标准化使AI能够从多源数据读取数据创建孪生模型,确保数据在整个生命周期中的准确性和一致性。
1. 格式一致性。数据标准化确保了不同来源的数据采用统一的格式。例如,CAD图纸中的几何信息需要转换为AI可以理解的格式。这包括定义统一的几何元素(如点、线、面)和属性(如尺寸、材料、颜色),以便AI系统能够识别和处理这些信息,构建出与物理世界相对应的数字模型。
2. 语义一致性。数据标准化还涉及到数据语义的一致性,即确保不同数据源中的相同实体或概念使用相同的术语和定义。例如,在建筑信息模型(BIM)中,确保“墙”、“门”、“窗”等建筑元素的定义和属性在所有相关数据集中都是一致的。这样,AI系统在创建数字孪生模型时,能够正确地识别和关联这些实体,构建出准确的数字表示。
3. 数据映射与转换。数据标准化还包括数据映射和转换的过程,将不同格式的数据转换为统一的数据模型。例如,将CAD图纸中的图形信息转换为三维空间坐标,或将传感器数据中的时间戳、位置信息转换为数字孪生模型中的实时状态更新。这些转换规则需要标准化,以确保数据的准确传输和解析。
4. 元数据与数据质量。数据标准化还涉及到元数据的标准化,包括数据的来源、创建时间、更新时间、数据类型等,以及数据质量的评估标准。这些元数据和质量标准帮助AI系统判断数据的可靠性和时效性,确保数字孪生模型的准确性和实时性。
5. 接口与通信协议。在数据标准化的过程中,定义统一的接口和通信协议也是至关重要的。这确保了不同系统和数据源之间能够无缝地交换数据,AI系统能够通过这些接口获取所需的数据,构建和更新数字孪生模型。