「BZOJ1901」 Dynamic Rankings - 树套树/整体二分

题目描述

给定一个长度为N的已知序列A[i](1iN)A[i](1\le i\le N),要求维护这个序列,能够支持以下两种操作:

  1. 查询A[i],A[i+1],A[i+2],,A[j](1ijN)A[i],A[i+1],A[i+2],…,A[j](1\le i\le j\le N)中,升序排列后排名第k的数。
  2. 修改A[i]A[i]的值为tt

输入格式

第一行有两个正整数n,mn,m。分别表示序列的长度和指令的个数。第二行有nn个数,表示a[1],a[2], ,a[n]a[1],a[2],\cdots,a[n]。接下来的mm行描述每条指令,每行的格式是下面两种格式中的一种。Q i j k或者C i t(1ijn,1kji+1)(1≤i≤j≤n, 1≤k≤j-i+1),分别表示询问a[i],a[i+1], ,a[j]a[i],a[i+1],\cdots,a[j]中第k小的数。把a[i]a[i]改变成为tt

输出格式

对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。

数据范围

20%20\%的数据中,m,n100;m,n≤100;

40%40\%的数据中,m,n1000;m,n≤1000;

100%100\%的数据中,m,n10000a[i]109.m,n≤10000,a[i]\le 10^9.

分析

在这里总结一下各种求区间第kk小的数据结构(对于划分树这种不常见的数据结构就不再介绍)。

树状数组套主席树

首先主席树是可以求区间第kk小的。如果对第ii个位置的线段树进行修改,则对于所有的jij\ge i都要进行修改,所以在外层套一个树状数组,就可以做到在O(log2n)O(\log^2n)的时间内做到修改。

查询时先用pospos在树状数组中跑一遍,找到需要查询的根节点,再调用函数。为了求得当前节点的值,可以用找到的根节点,将所有信息相加。最后所有根同时向左或向右走。

修改时先删除原来的值,在加入现在的值,同样在树状数组中,对每一个根进行一次修改。

由于是权值线段树,所以还要离线进行离散化。

代码

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
const int N=100005,M=N*25;
int L[M],R[M];
int n,m,c[M],a[N];
int root[N],tot,ntot;
vector<int> Li,Ri,ert;
int Qtype[N],Qx[N],Qy[N],Qk[N];
#define lowbit(x) ((x)&-(x))
int Build(int l,int r) {
	int rt=++tot;
	if (l==r) {
		c[rt]=0;
		return rt;
	}
	int mid=(l+r)>>1;
	L[rt]=Build(l,mid);
	R[rt]=Build(mid+1,r);
	return rt;
}
int Change(int p,int l,int r,int x,int v) {
	int rt=++tot;
	L[rt]=L[p];
	R[rt]=R[p];
	c[rt]=c[p];
	if (l==r) {
		c[rt]+=v;
		return rt;
	}
	int mid=(l+r)>>1;
	if (x<=mid) L[rt]=Change(L[p],l,mid,x,v);
	else R[rt]=Change(R[p],mid+1,r,x,v);
	c[rt]=c[L[rt]]+c[R[rt]];
	return rt;
}
void Need(int x,vector<int>& v) {//找到所需要的根 
	while (x) {
		v.push_back(root[x]);
		x-=lowbit(x);
	}
}
void BecomeL(vector<int>& v) {for (int i=0;i<v.size();i++) v[i]=L[v[i]];}
void BecomeR(vector<int>& v) {for (int i=0;i<v.size();i++) v[i]=R[v[i]];}
int Ask(int l,int r,int k) {
	if (l==r) return l;
	int suml=0,sumr=0;
	for (int i=0;i<Li.size();i++) suml+=c[L[Li[i]]];//累加 
	for (int i=0;i<Ri.size();i++) sumr+=c[L[Ri[i]]];
	int minus=sumr-suml;
	int mid=(l+r)>>1;
	if (minus>=k) {
		BecomeL(Li);//同向左 
		BecomeL(Ri);
		return Ask(l,mid,k);
	} else {
		BecomeR(Li);//同向右 
		BecomeR(Ri);
		return Ask(mid+1,r,k-minus);
	}
}
void Updata(int x,int v,int dt) {
	while (x<=n) {//它在树状数组中的对应所有的有关都要修改 
		root[x]=Change(root[x],1,ntot,v,dt);
		x+=lowbit(x);
	}
}
int GetNum(int val) {
	int t=lower_bound(ert.begin(),ert.end(),val)-ert.begin();
	return t+1;
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) {
		scanf("%d",&a[i]);
		ert.push_back(a[i]);
	}
	while (getchar()!='\n');
	for (int i=1;i<=m;i++) {
		int x,y,k;
		char op[10];
		scanf("%s%d%d",op,&x,&y);
		if (op[0]=='C') {
			Qtype[i]=1;
			Qx[i]=x;
			Qy[i]=y;
			ert.push_back(y);
		} else {
			scanf("%d",&k);
			Qtype[i]=0;
			Qx[i]=x;
			Qy[i]=y;
			Qk[i]=k;
		}
	}
	sort(ert.begin(),ert.end());//离散化 
	vector<int>::iterator it=unique(ert.begin(),ert.end());
	ert.erase(it,ert.end());
	ntot=ert.size();
	root[0]=Build(1,ntot);
	for (int i=1;i<=n;i++)
		Updata(i,GetNum(a[i]),1);
	for (int i=1;i<=m;i++) {
		int x,y,k;
		x=Qx[i];y=Qy[i];k=Qk[i];
		if (Qtype[i]) {//修改 
			Updata(x,GetNum(a[x]),-1);//先删除 
			a[x]=y;
			Updata(x,GetNum(a[x]),1);//再加入 
		} else {//查询 
			Li.clear();
			Ri.clear();
			Need(x-1,Li);
			Need(y,Ri);
			printf("%d\n",ert[Ask(1,ntot,k)-1]);
		}
	}
	return 0;
}

线段树套平衡树

说起全局第kk小,首先想到的肯定是平衡树,然后对于区间操作,容易想到线段树。所以将这两个棵树结合起来就可以了。对于线段树的每个节点,为它所控制的区间的平衡树。

修改时将根到该节点路径上的节点的平衡树先删除原来的值,再加入当前值。时间复杂度O(log2n)O(\log^2n)

查询时发现不能直接求得答案,但可以通过二分答案来求。设当前二分答案为midmid,则在区间中查询有多少个元素小于midmid,记为tt,若tkt\ge k,则在令R=midR=mid,否则令L=mid+1L=mid+1,在新的区间内继续二分。时间复杂度O(log3n)O(\log^3n)

代码

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=100005,M=N*25;
const int INF=0x7fffffff;
int c[M][2],f[M];
int sz[M],v[M],ct[M];
int rt[N<<2],ans,temp;
int a[N],n,m,tot;
//---------------Splay相关-----------------//
void Pushup(int x) {sz[x]=sz[c[x][0]]+sz[c[x][1]]+ct[x];}
void Rotate(int x) {//旋转 
	int y=f[x],z=f[y];
	int k=c[y][1]==x,w=c[x][k^1];
	if (z) c[z][c[z][1]==y]=x;
	c[y][k]=w;c[x][k^1]=y;
	f[y]=x;f[x]=z;f[w]=y;
	Pushup(y);
	Pushup(x);
}
void Splay(int x,int p,int at=0) {//伸展 
	while (f[x]!=at) {
		int y=f[x],z=f[y];
		if (z) Rotate((c[y][1]==x)^(c[z][1]==y)?x:y);
		Rotate(x);
	}
	if (!at) rt[p]=x;
}
void Insert(int p,int val) {//插入 
	if (!rt[p]) {
		rt[p]=++tot;
		sz[rt[p]]=ct[rt[p]]=1;
		v[rt[p]]=val;
		return;
	}
	int w=rt[p];
	while (1) {
		sz[w]++;
		if (v[w]==val) {
			ct[w]++;
			Splay(w,p);
			return;
		}
		int nxt=val<v[w]?0:1;
		if (!c[w][nxt]) {
			c[w][nxt]=++tot;
			f[tot]=w;
			sz[tot]=ct[tot]=1;
			v[tot]=val;
			Splay(tot,p);
			return;
		}
		w=c[w][nxt];
	}
}
int Find(int p,int val) {//查找 
	int w=rt[p];
	while (w) {
		if (v[w]==val) return w;
		if (val<v[w]) w=c[w][0];
		else w=c[w][1];
	}
	return 0;
}
void Remove(int p,int val) {//删除 
	int t;
	if (!(t=Find(p,val))) return;
	Splay(t,p);
	if (ct[t]>1) {
		ct[t]--;
		sz[t]--;
		return;
	}
	if (!c[t][0]) {
		f[c[t][1]]=0;
		p=c[t][1];
		return;
	}
	int lc=c[t][0];
	while (c[lc][1]) lc=c[lc][1];
	Splay(lc,p);
	f[c[t][1]]=lc;
	c[lc][1]=c[t][1];
	c[t][0]=c[t][1]=0;
	f[t]=0;sz[t]=ct[t]=v[t]=0;
	Pushup(lc);
}
int Pre(int p,int val) {//后继 
	int tmp=0,vt=-INF,w=rt[p];
	while (w) {
		if (v[w]==val) {
			int lc=c[w][0];
			if (lc) {
				while (c[lc][1]) lc=c[lc][1];
				tmp=lc;
			}
			break;
		}
		if (v[w]<val&&v[w]>vt) {
			tmp=w;
			vt=v[w];
		}
		w=(val<v[w]?c[w][0]:c[w][1]);
	}
	return tmp;
}
int Next(int p,int val) {//前驱 
	int tmp=0,vt=INF,w=rt[p];
	while (w) {
		if (v[w]==val) {
			int rc=c[w][1];
			if (rc) {
				while (c[rc][0]) rc=c[rc][0];
				tmp=rc;
			}
			break;
		}
		if (v[w]>val&&v[w]<vt) {
			tmp=w;
			vt=v[w];
		}
		w=(val<v[w]?c[w][0]:c[w][1]);
	}
	return tmp;
}
//-------------以上为Splay相关-------------//
//---------------线段树相关----------------//
void Build(int p,int l,int r) {//建树 
	Insert(p,-INF/2);
	Insert(p,INF/2);
	for (int i=l;i<=r;i++)
		Insert(p,a[i]);
	if (l==r) return;
	int mid=(l+r)>>1;
	Build(p<<1,l,mid);
	Build(p<<1|1,mid+1,r);
}
void AskRank(int p,int l,int r,int L,int R,int val) {//查询 
	if (L<=l&&r<=R) {
		int t=Find(p,val);
		if (!t) t=Next(p,val);
		Splay(t,p);
		ans+=sz[c[rt[p]][0]]-1;
		return;
	}
	int mid=(l+r)>>1;
	if (L<=mid) AskRank(p<<1,l,mid,L,R,val);
	if (R>mid) AskRank(p<<1|1,mid+1,r,L,R,val);
}
void Change(int p,int l,int r,int x,int val) {//修改 
	Remove(p,a[x]);
	Insert(p,val);
	if (l==r) return;
	int mid=(l+r)>>1;
	if (x<=mid) Change(p<<1,l,mid,x,val);
	else Change(p<<1|1,mid+1,r,x,val);
}
//---------------以上线段树相关--------------//
int GetKth(int x,int y,int k) {
	int mid,l,r;
	l=-INF/2,r=INF/2;
	while (l<r) {
		mid=(l+r)>>1;
		ans=0;
		AskRank(1,1,n,x,y,mid);//在线段树中查找它的排名即为小于mid的个数 
		if (ans<k) l=mid+1; 
		else r=mid;
	}
	return l-1;
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	Build(1,1,n);//建树 
	for (int i=1;i<=m;i++) {
		int l,r,x,pos;
		char op[10];
		scanf("%s",op);
		if (op[0]=='C') scanf("%d%d",&pos,&x);
		else scanf("%d%d%d",&l,&r,&x);
		if (op[0]=='Q') {
			printf("%d\n",GetKth(l,r,x));
		} else if (op[0]=='C') {
			Change(1,1,n,pos,x);
			a[pos]=x;
		}
	}
	return 0;
}

整体二分

离线处理,整体二分。对于每一个初始值看成修改操作,每一个修改转为删除原来的值,加入当前的值两种操作,查询正常。然后在值域内进行整体二分。总时间复杂度O(nlog2n)O(n\log^2n)

代码

#include <iostream>
#include <cstdio>
using namespace std;
const int N=10005;
const int INF=0x7fffffff;
struct Query {
	int x,y,v,id;
}q[N*3],ql[N*3],qr[N*3];
int a[N],n,m;
int tot,qtot;
int ans[N];
struct Bit {
	int c[N],res;
	void Add(int x,int v) {for (;x<=n;x+=x&-x) c[x]+=v;}
	int Ask(int x) {for (res=0;x;x-=x&-x) res+=c[x];return res;}
	int Ask(int l,int r) {return Ask(r)-Ask(l-1);}
}t;
void Solve(int l,int r,int L,int R) {
	if (l>r) return;//操作序列为空返回 
	if (L==R) {//递归到叶子节点,答案为L 
		for (int i=l;i<=r;i++)
			if (q[i].y) ans[q[i].id]=L;
		return;
	}
	int mid=(L+R)>>1;
	int lt=0,rt=0;
	for (int i=l;i<=r;i++) {//依次处理每个操作 
		if (!q[i].y) {//修改 
			if (q[i].x<=mid) {//符合条件 
				t.Add(q[i].id,q[i].v);//在树状数组对应位置加 
				ql[++lt]=q[i];//分到左区间 
			} else qr[++rt]=q[i];//分到右区间 
		} else {//查询 
			int cnt=t.Ask(q[i].x,q[i].y);//询问区间内小于mid的个数 
			if (cnt<q[i].v) {//小于说明不够,分到右区间 
				q[i].v-=cnt;//减去贡献 
				qr[++rt]=q[i];
			} else ql[++lt]=q[i];//多了,分到右区间 
		}
	}
	for (int i=1;i<=lt;i++)//撤销对树状数组的操作 
		if (!ql[i].y)
			t.Add(ql[i].id,-ql[i].v);
	for (int i=1;i<=lt;i++) q[l+i-1]=ql[i];//合并 
	for (int i=1;i<=rt;i++) q[l+lt+i-1]=qr[i];
	Solve(l,l+lt-1,L,mid);//递归二分 
	Solve(l+lt,r,mid+1,R);
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) {
		scanf("%d",&a[i]);//初始值 
		q[++tot]=(Query){a[i],0,1,i};
	}
	for (int i=1;i<=m;i++) {
		char op[10];
		int x,y,v;
		scanf("%s",op);
		if (op[0]=='Q') {//查询 
			scanf("%d%d%d",&x,&y,&v);
			q[++tot]=(Query){x,y,v,++qtot};
		} else {//修改 
			scanf("%d%d",&x,&v);
			q[++tot]=(Query){a[x],0,-1,x};
			a[x]=v;
			q[++tot]=(Query){a[x],0,1,x};
		}
	}
	Solve(1,tot,0,INF);
	for (int i=1;i<=qtot;i++)
		printf("%d\n",ans[i]);
	return 0;
}
发布了81 篇原创文章 · 获赞 3 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览