【bzoj2500】【幸福的道路】【树形dp+单调队列】

Description

小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光.
他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图.
他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……). 而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M).他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?
现在,他们把这个艰巨的任务交给你了!

Input

第一行包含两个整数N, M(M<=10^9).
第二至第N行,每行两个数字Fi , Di, 第i行表示第i个节点的父亲是Fi,且道路的幸福值是Di.

Output

最长的连续锻炼天数

Sample Input

3 2
1 1
1 3

Sample Output

3
数据范围:
50%的数据N<=1000
80%的数据N<=100 000

100%的数据N<=1000 000

题解:

设f[i]表示从点i向下走的最长路径.

设g[i]表示从点i先向上走再向下走的最长路径.

这两个数组通过两遍dfs即可求出.

那从一个点开始的最长路径a[i]=max(f[i],g[i]);

然后问题就是从一个序列中找到一个最长的子串,满足其中的max-min<=m;

可以用两个单调队列分别维护最大值递减和最小值递增.

每次取出两个队列的队首进行比较,如果差大于m,就把位置更靠左的出队.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 1000010
#define LL long long
using namespace std;
LL f[N],g[N],a[N],q1[N],q2[N];
int ans,n,k,x,cnt,y,v,point[N],next[N<<1];
struct use{
  int st,en,v;
}e[N<<1];
int read(){
  int x(0);char ch=getchar();
  while (ch<'0'||ch>'9') ch=getchar();
  while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
  return x;
}
void add(int x,int y,int v){
  next[++cnt]=point[x];point[x]=cnt;
  e[cnt].st=x;e[cnt].en=y;e[cnt].v=v;
}
void getf(int x,int fa){
  for (int i=point[x];i;i=next[i])
    if (e[i].en!=fa){
      getf(e[i].en,x);
      f[x]=max(f[x],f[e[i].en]+e[i].v);
    }
}
void getg(int x,int fa){
  LL mx=0,cmx=0;
  for (int i=point[x];i;i=next[i])
    if (e[i].en!=fa){
      if (f[e[i].en]+e[i].v>mx) cmx=mx,mx=f[e[i].en]+e[i].v;
      else cmx=max(cmx,f[e[i].en]+e[i].v);
      g[e[i].en]=g[x]+e[i].v;
    }
  for (int i=point[x];i;i=next[i])
    if (e[i].en!=fa){
      if (f[e[i].en]+e[i].v==mx) g[e[i].en]=max(g[e[i].en],e[i].v+cmx);
      else g[e[i].en]=max(g[e[i].en],e[i].v+mx);
      getg(e[i].en,x);
    }
}
void solve(){
  int l1=1,l2=1,r1=0,r2=0,t=1;
  for (int i=1;i<=n;i++){
    while (l1<=r1&&a[i]<=a[q1[r1]]) r1--;
    while (l2<=r2&&a[i]>=a[q2[r2]]) r2--;
    q1[++r1]=i;q2[++r2]=i;
    while (a[q2[l2]]-a[q1[l1]]>k){
      if (q2[l2]<=q1[l1]) t=q2[l2]+1,l2++;
      else t=q1[l1]+1,l1++;
    } 
    ans=max(ans,i-t+1);
  }
}
int main(){
  //freopen("a.in","r",stdin);
  //freopen("a.out","w",stdout);
  n=read();k=read();
  for (int i=2;i<=n;i++){
    x=read();v=read();
    add(i,x,v);add(x,i,v);
  } 
  getf(1,0);
  getg(1,0);
  for (int i=1;i<=n;i++) a[i]=max(f[i],g[i]);
  solve();
  cout<<ans<<endl; 
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值