LeetCode题解–135. Candy

链接

LeetCode题目:https://leetcode.com/problems/candy/

难度:Hard

题目

There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
Each child must have at least one candy.
Children with a higher rating get more candies than their >neighbors.
What is the minimum candies you must give?
题目大意是N个小孩站成一排,每个小孩都被分配了一个分数。现在要给他们发糖,需要满足两个条件:一,每个小孩至少分到一块糖;二,分数高的小孩必须比他相邻的小孩分的糖多。求问最少需要发多少块糖?

分析

这题一开始想的是用贪心算法做,先给第一个小孩发1块糖。后面每加一个小孩站在右边,如果他的分数比左边的小孩高,给他比左边小孩发多1块糖;如果分数相等,只给他发1块糖;如果分数低,则是我们需要重点关注的情况,先给他发1块糖,然后向左回溯,检查每个小孩相比其右边小孩是否分数更高但糖不更多,如果是的话,给他发多1块糖。这个思路没问题,但因为时间复杂度是O(n^2),不能通过最后一个测试用例。
重新思考了一下,其实不需要回溯。如果遇到的小孩连续都是分数比左边低的,这个分数子序列会变成一个递减序列,我们可以用max_pos记录这个递减序列最左边的位置,max_candy记录这个位置的小孩当前拿了几颗糖。这样一来,每次遇到第i个分数低的小孩,可以把[max_pos+1, i-1]这个区间的小孩发多1块糖,然后再判断max_pos位置的小孩是否需要多得1颗糖。

代码

class Solution {
public:
    int candy(vector<int> &ratings) {
        int n = (int) ratings.size();
        if (n == 0) return 0;
        vector<int> candies((unsigned long) n, 0);
        candies[0] = 1;
        int sum = 1;
        int max_pos = 0, max_candy = 1;
        for (int i = 1; i < n; i++) {
            if (ratings[i] > ratings[i - 1]) {
                candies[i] = candies[i - 1] + 1;
                max_pos = i;
                max_candy = candies[i];
            } else if (ratings[i] == ratings[i - 1]) {
                candies[i] = 1;
                max_pos = i;
                max_candy = 1;
            } else {
                candies[i] = 1;
                sum += i - max_pos - 1;
                if (max_candy < i - max_pos + 1) {
                    max_candy = i - max_pos + 1;
                    sum += 1;
                }
            }
            sum += candies[i];
        }
        return sum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值