分治法

分治法一般步骤:

  • 分(divide):将大问题分解为一些小问题
  • 治(conguer):分别处理(解决)这些小问题
  • 合(combine):组合各个小问题处理之后的结果

常见的分治法有:

  1. 归并排序(mergeSort)
    T(n)=2T(n/2)+Θ(n)
    由主方法可知,时间复杂度为 Θ(nlog2n)

  2. 二分搜索(binary search)
    T(n)=T(n/2)+Θ(1)
    时间复杂度为 Θ(log2n)

  3. 乘方运算
    xn
    由于以前没有写过乘方运算的递归代码,就在这里贴上python代码

    def power(x,n):
        if n == 1:
            return x
        if n % 2 == 0:
            v = power(x, n / 2)
            return v * v
        v = power(x, n / 2)
        return v * v * x

    T(n)=T(n/2)+Θ(1)
    时间复杂度为 Θ(log2n)

  4. 费波纳茨数列

    F(n)=01F(n1)+F(n2)n=0n=1n>1

    • 递归函数求解费波纳茨数列

    def fib(n):
        if n == 0 or n == 1:
            return n
        return fib(n - 1) + fib(n - 2)

    T(n)=T(n1)+T(n2)
    时间复杂度为 Ω(ϕn)[ϕ=1+52]
    可见时间复杂度为指数级

  5. 迭代法求解费波纳茨数列(自下而上递归)

    def fib(n):
        if n == 0 or n == 1:
            return n
        a = 0
        b = 1
        i = 1
        while i < n:
            tmp = b
            b = a + b
            a = tmp
            i += 1
        return b

    时间复杂度为 Θ(n)

  6. 数学方法
    fib(n)=ϕnn
    时间复杂度为 Θ(log2n)
    这是一种理想情况,因为在现代计算机中,用浮点数表示实数会产生误差。

  7. 矩阵法
    [fib(n+1)fib(n)fib(n)fib(n1)]=[1110]n
    时间复杂度 Θ(log2n)
    下面证明该矩阵公式:
    1. n=1 ,显然成立
      [fib(2)fib(1)fib(1)fib(0)]=[1110]
    2. 假设 n=n1 公式成立,那么
      [fib(n)fib(n1)fib(n1)fib(n2)]=[1110]n1
    3. n=n
      [fib(n+1)fib(n)fib(n)fib(n1)]=[fib(n)fib(n1)fib(n1)fib(n2)]×[1110]=[1110]n

矩阵法求解费波纳茨数列,python代码

def mul_matrix(ma,mb):
    ma_rows = len(ma)
    ma_clos = len(ma[0])
    mb_cols = len(mb[0])
    res = [[] for row in range(ma_rows)]
    for row in range(ma_rows):
        for col in range(mb_cols):
            value = 0
            for k in range(ma_clos):
                value += ma[row][k] * mb[k][col]
            res[row].append(value)
    return res

def power(L,n):
    if n == 1:
        return L
    if n % 2 == 0:
        v = power(L,n/2)
        return mul_matrix(v,v)
    v = power(L,n/2)
    return mul_matrix(mul_matrix(v,v),L)

def fib(n):
    if n == 0:
        return 0
    m = [[1,1],
         [1,0]]
    res = power(m,n)
    return res[0][1]

if __name__ == '__main__':
    for i in range(20):
        print '%5d' % fib(i)

输出结果:

>>> 
    0
    1
    1
    2
    3
    5
    8
   13
   21
   34
   55
   89
  144
  233
  377
  610
  987
 1597
 2584
 4181
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值