1、为什么caffe训练时训练集loss=0.06,验证集accuracy=0.98但测试集的准确率很低accuracy=0.67

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sinat_16985427/article/details/76633934

1、https://groups.google.com/forum/#!topic/caffe-users/NzKEWAFPPfI 提出新的测试方法

2、https://github.com/pherrusa7/foodCAT/blob/master/caffeWrapper.py github源码

3、https://www.zhihu.com/question/56017256  知乎上提问


4、根据问题特征, 训练好的高精度模型重新在原来的训练集上做predict, 准确率比较低,做以下猜测:

  1. predict 的时候没有做 data augmentation. 在图像识别中常用的一种方法是把输入图片做 augmentation, 然后, forward 之后取平均值. 因为 augmentation 之后的图片和原始图片的差异并不是很大, 因此, 题主做 predict 的时候没有 augmentation, 而在训练的时候做了 augmentation, 那么, 就容易出现题主描述的问题
  2. 预处理不一致. 如果训练和预测的预处理方法不同, 也有可能是出现类似的问题.

根据题主描述感觉题主可能是DL新手, 需要快糙猛出活, 所以, 感觉 1 的可能性很大

5、Google group 回答

I had the same issue, it seems like the problem was in my deploy.prototxt file where the name of the layers modified was not matching with the ones modified in train_val.txt. 

Fixing the error resulted in huge bump for the confidence score for the classes predicted.



作者:高钰舒
链接:https://www.zhihu.com/question/56017256/answer/147411720
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

展开阅读全文

没有更多推荐了,返回首页