【纯干货级教程】深度学习根据loss曲线进行分析调参

相信很多刚刚接触目标检测系列算法小伙伴跑深度学习算法时会有许多困惑,比如训练得出的loss曲线有什么意义?训练的一些参数要如何设置选择?选择哪个算法模型作为baseline、选择哪个参数量/复杂度/深度的模型进行训练最为合适?

本文将主要从训练过程中、训练得出的结果文件来进行阐述如何对自己的模型进行精进。如何对自己的模型进行调参分析。

当然,本文在阐述的时候可能会存在结论不全的情况,若你有相关疑问,欢迎在评论区批评指正、互相交流!我也会在后续持续进行更新完来完善该文章,欢迎关注。

一、训练得出的loss曲线有什么作用?

在训练结束后,通常会输出loss曲线,它是一种工具,能够帮助我们用以判断训练的好坏。

比如box_loss代表预测出的框和你数据集标定框的差距、obj_loss代表预测到目标的能力、cls_loss代表预测后,框中目标的类别正误,它们若有一个逐渐下降并最终收敛趋势则是正常的。

有些初学的小伙伴可能会将loss曲线当成影响指标的原因,但注意此处不能顾名思义,你在训练过程中有时会看见两轮输出的loss数值均正常下降,而评估出的结果却不一定会变好,它只能作为一种分析的手段,没有绝对性。

以yolov5/v7为例,loss曲线通常输出trainloss和valloss,分别代表训练集和测试集的损失曲线。

输出的loss曲线通常会有以下特征。

1.正常收敛

现象描述:train和val的曲线均趋于平缓,指标的值也趋于平缓,虽然train看起来还未收敛(主要原因是我没认真去调~)。同时,示例图片有些波动,但这其实是数据集较少的原因导致,此情况见第6点。

2.没有完全收敛(欠拟合)

现象描述:曲线没有下降到趋于平缓的情况。此处的val乍一看开始是下降了然后趋于平缓,但这是视觉上的问题,本质上忽略掉前几个epoch则可发现val仍在下降,且下降地不完全明显。同时,四个指标的趋势仍在上升,将其数据单独拿出则可明白仍未收敛。

解决方法:加大epoch、加大batchsize、换用更深的模型、很难拟合的情况尝试加载预训练权重、加大数据集评估结果较差的那个类别的图片数量。

3.过拟合

现象描述:如图,指标的曲线正常下降趋于平缓甚至逐渐降低,而val由正常下降再平缓再趋于上升,这是一个典型的过拟合情况。

解决方法:减少epoch、减少batchsize、增加数据集数据量(一般不这样做)、减小网络复杂度、减小层数、更换参数量较低的模型如YOLOv5x转YOLOv5s测试。

4.过早收敛

现象描述:乍一看曲线很平滑,也趋于收敛。但仔细观察,在约第20个epoch时,模型快速收敛,这或许说明采用的模型深度太深、数据集太过简单(也侧面反映了模型深度深过于复杂)、batchsize过高。

解决方法:降低batchsize、换参数量、深度较小的模型或对某些模块进行删除修改或替换轻量化模块等、降低学习率。

若你的数据集本来就很简单,则属于正常收敛,但若你的数据集并不小,如有几千、几万张,则考虑上述解决方法。

5.训练失败

(此处就不配图了,博主暂时没遇到这种情况,请根据现象描述进行判断)

现象描述:曲线乱跳、没有指标输出(均为0)

这种情况的train和val的曲线趋势相同,几乎都是一条水平的直线,并且虽然花了时间训练、训练过程中没有报什么错,但模型在本次训练中几乎没有学习到什么。该现象存在以下原因:

当在不对拉取的项目文件做修改时,往往是数据集的原因,数据集出现了严重的标注错误、类别混淆等。

数据集数量太小,选择的epoch也很少,不足以支持学习。

检测的类别的模样相差很大,但却标注了同一类名称,目标较难识别。这种情况需要对数据集进行重新设计。

项目文件存在缺陷,思考一下自己是不是改了项目文件或者其中某个参数。

解决方法:先检查数据集,这通常绝大部分原因是数据集的问题(尤其是数量、质量)。确认无误后尝试更换优化器。再测试别的对比试验,实在不行就放弃该实验采用别的实验,节约时间。

6.曲线震荡幅度大

现象描述:曲线不是很平滑规整、同时指标也不是很平滑规整。

解决方法:加大数据集的数据量(假设有多个类别A-500张、B-500张、C-50张,则加大你类别最少的数据量,即C加大),略微增加epoch。

7.train和val均升高

现象描述:这种情况通常train和val的loss图像都是向上的,指标很差或直接为0。这种情况博主也没遇到过,暂时先不配图。

解决方法:若是自己设计的网络,检查模型是否存在问题,是否合理。检查自己配置文件的参数设置是否正常。检测数据集是否存在严重质量上的问题。

8.train下降,val升高

现象描述:这种情况通常train是下降的,并且通常比较平滑,而val的loss图像是持续向上的,当然,也可能开头几个epoch的val是下降的,但后来一直持续上升,这种问题据博主观察常出现在自建数据集中,此处博主展开讲。

解决方法:虽然你的自建数据集可能只有一个类别,但实际你划分你的训练、验证集的时候,需要仔细划分。这里博主举一个例子,若你进行的是一个类别的陷坑检测,则请注意训练和验证集中均需要保证有这个陷坑的各种情况(背景)。

比如以上是陷坑数据集的示例图片。

我们可以发现,这几张图片语义信息丰富。从左到右、从上到下看,第一张是沥青下的陷坑数据集,陷坑内貌似有积水,沥青下的陷坑内是黑色的,第二张属于晴天、乡镇为背景情况下的陷坑反光,第三张是雨后水泥地下的陷坑,而且陷坑内有积水,陷坑旁有许多碎石,第四章属于乡镇情况下的陷坑,且被用物品放置陷坑内明显提示了来往车辆,第五张则是水泥地下的陷坑,不是很明显......语义信息较为丰富,在这种情况下,若你只用最后一张图片作为val,而其它用于train或与之相反,很显然,这是不合理的,且容易导致上述情况,因此,对数据集进行划分时,盲目随机不可取

9.某个指标最开始数值极高

现象描述:这种情况通常与train、val的loss曲线无关,而是指precision或者recall指标最开始几个世代的数值飙升,而后却马上降低,导致曲线出现如图所示的情况。

解决方法:这种情况若加载了预训练权重,有可能是由于迁移学习导致的模型性能较好,但这种数据显然是不真实的,尝试不加载权重。还有可能是模型深度太浅,可测试换用更深的模型,比如你现在用的是yolov5n,尝试换成yolov5s进行测试。

同时,各位同学在平常训练的时候可以仔细观察一下,是不是经常过拟合的时候,开始P值R值都很高呢?

思考一下,这或许可以给你带来一些帮助。

10.训练过程中输出出现“nan”字样

现象描述:训练进程中,loss或指标出现nan字样,或者loss出现nan,指标为0,或loss是正常的数值,指标为nan。

解决方式:这种情况多关注自己的基本环境版本、基本参数设置等是否存在问题。

需要注意的是,采用SDG优化器时,学习率设置为0.01,Adam优化器的学习率设置为0.001。出现上述问题,先观察各个超参数,尤其观察学习率,优化器,hyp等。

上述问题若都没有解决,重中之重是排查自己的机器适合的环境。很多时候你版本不对但也是能跑通程序的,但由于不同版本的函数调用方式等过时或不存在,就有可能导致该问题。

非常典型的一个例子就是numpy这个库,即使版本不对应,你在YOLOv7中也能跑通,但由于版本的问题需要对项目代码的部分均值调用方式做修改。

除此之外观察你的环境是否一一对应。比如显卡支持的CUDA版本与torch等之间的关系。

不知道具体流程的可看我该博客:

【保姆级最简洁教程】零基础如何快速搭建YOLOv5/v7?_yolov7保姆级教程-CSDN博客

附.还有一些可能出现的情况

1.现象描述:训练过程中,出现曲线(如loss或指标)偶尔跳一下,幅度不是很剧烈,类似上述图片的  约百分之十左右。

   答:此问题若自己标注的,注意是不是某些/张图片标注出错?若没出错,也是正常的现象,可不做理会,一般不是过拟合的情况下加大epoch曲线就会平缓许多。

2.现象描述:训练过程中,loss/指标曲线的抖动正常吗?

   答:很正常,曲线略微抖动但最终都会趋于收敛的,属于十分正常的现象。

3.现象描述:训练过程中,loss曲线在某一点突然下降,以后均下降了,这正常吗?

   答:很正常,loss曲线突然下降,以后均下降了,可以理解为学习过程中找到了一个合适的方向,因此下降的很快。包括指标突然降低一下也没什么,属于正常情况,若指标持续下降,很可能是过拟合了,结合上文情况具体分析。

4.欢迎在评论区提问或晒图!

正常会遇到的情况绝大多数是:过拟合、欠拟合、(自己收集的而非官方开源的)数据集错误。

很多时候盲目增大batchsize、epoch反而会降低评估的结果,但这不是绝对的。

同时,看loss曲线的变化并不能百分百判断出遇到的情况,博主建议大家一点一点地做修改,一次解决一个问题测试后再解决,一步一步排错,方能完美地解决问题。

自己制作的数据集通常在类别、数据划分时经常出错,需注意。

二、一些心得:如何最大情况地避免训练过程中出现问题?我们在训练前应该做到什么?

1.明确目的

意思是你进行训练要做什么用?工业或是科研?以科研为例,分析你的场景需求是否适合讲故事,自己能否说得通等,分析比如你在疫情期间去写检测口罩的论文会更好通过,现在显然作用没有之前那么大。

2.选择合适的数据集

选择数据集的时候重点关注数据集是否存在标注错误、图像质量如何、图像数量是否足够支撑一篇论文所需的量、数据文件大小是否适合你的机器等。

及时排除能省不少事。如RSOD数据集就存在标注错误,这很可能会对你的训练结果产生一定影响。

3.先测对比试验

选择合适的baseline作为你的改进基础,据此进行改进。笔者曾在SSDD进行实验,当我测试其在YOLOv7-tiny的训练结果时在83左右正常收敛,输出曲线也并无什么异常,于是直接进行魔改,测试了一段时间涨点百分之11后一测对比试验,结果只打过了YOLOv5-n,于是惨遭失败。因此,为了节约时间,一定要注意自己的步骤。

4.制定计划

改进过程中,最好自己先制定一个计划,设计一个表格来展示你的Precision、Recall、map@0.5、map@0.5:.95、F1分数以及GFLOPS,据此做出对比与参考,同时对实验出的文件进行留样,选择必要的文件进行存储,并用以说明实验时发现的问题等。

5.详细分析

对自己的baseline进行分析,主要是对自己的loss曲线做分析,根据第一大点分析收敛地是否合理,曲线是否足够平滑。

完成上述步骤后,则可以尽量减少实验出现的失误以节约时间。

三、补充:我们在训练过程中得出的文件重点要关注什么?——以YOLOv5/v7为例

若直接以YOLOv7的项目文件为基础不做多余的修改进行训练,将会得出以下文件

其中我们需要重点关注的文件有:

1.weights文件夹下的best.pt/last.pt

如图所示,其中best.pt用于存放你目前评估结果最佳的模型权重,last.pt用于存放你训练中断或结束后的最后一个已经评估完成的epoch,主要用于断点重训,在项目文件的train.py中将resume设为true即可断点重训。当你需要这么做的时候请看点

2.confusion_matrix

混淆矩阵通过计算基于混淆矩阵的各种性能指标,如准确率、召回率、精确率、F1分数以及mAP(Mean Average Precision)等,可以全面评估目标检测模型在不同类别上的表现。

也能够直接展示出哪些类别被频繁误分类或漏检,有助于识别模型在特定类别上的弱点,尤其是在类别分布不均的数据集中。

通过分析混淆矩阵,我们可以针对性地优化模型,比如对频繁产生假正例的类别调整分类阈值,或对特定类别增加训练数据以提高模型的泛化能力。

如图,比如airplane被预测为airplane的概率为1,被预测为背景的概率则为0.05等。

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

3.F1_curve

F1分数作为精确率和召回率的调和平均值,能够综合评估模型在这两方面的表现,帮助找到一个二者之间的平衡点。

有些时候,某些类别的对象可能远多于其他类别,导致模型倾向于预测该类别而忽视其他数量较少的类别。F1分数在这种情况下尤为有用,因为它不会像准确率那样受到类别频率的影响,可以更公平地评估模型在所有类别上的表现。

同时,在比较不同的目标检测算法或模型时,F1分数提供了一个统一的标准,使得不同方法的性能可以直接进行对比。

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

如图的F1分数最佳值为0.76,而0.618应为最佳值所对应的置信度(最值点)。

4.hyp.yaml/opt.yaml

用于存放你训练过程中设置的参数。

5.P_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的Precision与置信值的关系,通常存在一个关系,P值越高,同等地R值越低,反之亦然。

阈值越高的时候,越好找对目标,但同样的能否找齐所有目标的能力则变低了,比如出现漏检。

6.R_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的Recall与置信值的关系,通常存在一个关系,R值越高,同等地P值越低,反之亦然。

阈值越低的时候,越好找全所有目标,也就是Recall越高,但同样的能否正确找到目标的难度也提高了,比如误检。

7.PR_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的P-R曲线,展示了P与R之间的关系,同样能证明你的模型好坏。

该曲线的面积越大代表模型能力越强,反之则弱。

8.results.txt

用于展示你训练过程中的各个数据输出,比如train_loss、val_loss以及四个指标Precision、Recall、map@0.5、map@0.5:.95,输入图像尺寸以及epoch结束的最后一个标签加载数(该数字可用于定位是否发生了断点训练)

9.results.png

用于展示results.txt的文件,通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)。

当你的类别数为1时,classification则为一条直线或如图所示的情况

  • 55
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
好的,很高兴为您解答这个问题。 在深度学习中,数据增强是一种常用的技术,它可以通过对原始数据进行变换、裁剪、旋转、翻转等操作,来扩充训练集,从而提高模型的泛化能力和鲁棒性。在图像领域,常用的数据增强方法包括随机裁剪、随机旋转、随机翻转、色域变换等。下面,我将为您介绍如何使用 Python 对图像进行随机数据增强。 1. 随机裁剪 随机裁剪是一种简单而有效的数据增强方法,它可以通过对原始图像进行随机裁剪,来扩充训练集。在 Python 中,我们可以使用 PIL 库中的 Image 模块来实现随机裁剪。 ```python from PIL import Image import random def random_crop(img, crop_size): w, h = img.size left = random.randint(0, w - crop_size) top = random.randint(0, h - crop_size) right = left + crop_size bottom = top + crop_size return img.crop((left, top, right, bottom)) ``` 2. 随机旋转 随机旋转是一种常用的数据增强方法,它可以通过对原始图像进行随机旋转,来扩充训练集。在 Python 中,我们可以使用 PIL 库中的 Image 模块来实现随机旋转。 ```python from PIL import Image import random def random_rotate(img, angle_range): angle = random.uniform(-angle_range, angle_range) return img.rotate(angle) ``` 3. 随机翻转 随机翻转是一种简单而有效的数据增强方法,它可以通过对原始图像进行随机翻转,来扩充训练集。在 Python 中,我们可以使用 PIL 库中的 Image 模块来实现随机翻转。 ```python from PIL import Image import random def random_flip(img, flip_prob): if random.random() < flip_prob: return img.transpose(Image.FLIP_LEFT_RIGHT) return img ``` 4. 色域变换 色域变换是一种常用的数据增强方法,它可以通过对原始图像进行色彩变换,来扩充训练集。在 Python 中,我们可以使用 PIL 库中的 Image 模块来实现色域变换。 ```python from PIL import Image import random def random_color(img, color_range): r, g, b = img.split() r = r.point(lambda i: i + random.randint(-color_range, color_range)) g = g.point(lambda i: i + random.randint(-color_range, color_range)) b = b.point(lambda i: i + random.randint(-color_range, color_range)) return Image.merge('RGB', (r, g, b)) ``` 以上就是使用 Python 进行随机数据增强的一些常用方法,希望对您有所帮助。如果您有任何问题,请随时联系我。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值