<<Stochastic Discrete Event Systems >>学习笔记

最近在因为开发的需要,学习关了离散事件系统的仿真,选读了一本国外的书籍,记下自己学习的笔记--2016.08.07

2.3.1行为规则的定义

1.可用规则

2.初始化状态规则

在初始变量值为Val0*条件下,系统初始化选择可用的模式,以相同的概率选择一个模式,并执行相对应的延时。

3.逗留时间规则

在一个已经完成的状态下,比如所有的下一步的活动已经指定,模型时间正在流逝。在这个阶段所有的剩余活动延时(RAD),以相同的速率递减,直到其中一个时间减少到0 (特例:已经存在RAD=0的活动不需特别处理),执行第一个活动减少到0的活动。

4.调度规则

目的:确定如何选择第一个执行的活动。如果同时有几个时间同时减少到0(前提几个活动并不冲突),我们需要觉得先执行哪一个。

5.执行规则

Dynamic event-triggered control (DETC) is a control strategy that reduces the number of times control actions are executed by triggering them only when necessary. This approach can save computational resources and improve the efficiency of control systems. In the context of discrete Markov jump systems (DMJS), DETC has been shown to be effective in stabilizing the system and ensuring its performance. DMJS are a class of systems that undergo discrete transitions between different operating modes, each characterized by a different set of dynamics. The transitions between modes are stochastic and determined by Markov processes. The goal of control in DMJS is to stabilize the system and ensure its performance despite the stochastic nature of the transitions. DETC for DMJS involves triggering control actions based on the system's state and the occurrence of certain events. The events can be defined based on the system's behavior or performance specifications. When an event occurs, the control action is executed, and the system transitions to a new mode. The triggering of the control action is based on a dynamic threshold that takes into account the system's state and the event occurrence. DETC has several advantages over traditional time-triggered control strategies in DMJS. It can reduce the number of control actions and improve the system's efficiency. It can also ensure the system's stability and performance in the presence of stochastic transitions. However, the design and implementation of DETC for DMJS can be challenging due to the complex nature of the system's dynamics and the stochastic transitions. Overall, DETC is a promising control strategy for DMJS that can improve the efficiency and performance of control systems. Further research is needed to develop more effective and robust DETC algorithms for DMJS.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值