二叉树系列六:求二叉树叶子结点间的最大距离 [编程之美]

题目描述:

  如果把二叉树看作图,父子结点间的连线是双向的,我们姑且定义“距离”为两个结点之间边的个数,如下图所示,相距最远的两个结点是A和B,距离为6。写程序实现二叉树中相距最远的两个结点之间的距离。

这里写图片描述

思路分析:

  计算一棵二叉树的最大距离有两种情况,第一种是路径经过左子树的最深结点,通过根节点,再到右子树的最深结点,那么距离就是左右子树的深度和;另一种情况是,路径不穿过根节点,只在左子树或者右子树,那么距离就是左子树和右子树距离的最大值。

这里写图片描述

C++代码实现:

struct TreeNode{
int Lmax;     //左子树的最长距离
int Rmax;     //右子树的最长距离
TreeNode* Lchild;
TreeNode* Rchild;
};


//求二叉树叶子结点的最大距离
int len = 0;
int FindMaxLen(TreeNode* root)
{
    if(root == NULL)
        return;
    if(root->Lchild == NULL)
        root->Lmax = 0;
    if(root->Rchild == NULL)
        root->Rmax = 0;
    if(root->Lchild != NULL)
        FindMaxLen(root->Lchild);
    if(root->Rchild != NULL)
        FindMaxLen(root->Rchild);
    if(root->Lchild != NULL)
    {
        root->Lmax = root->Lchild->Lmax > root->Lchild->Rmax ? (root->Lchild->Lmax + 1): (root->Lchild->Rmax + 1);
    }
    if(root->Rchild != NULL)
    {
        root->Rmax = root->Rchild->Lmax > root->Rchild->Rmax ? (root->Rchild->Lmax + 1) : (root->Rchild->Rmax + 1);
    }
    if((root->Lmax + root->Rmax) > len)
    {
        len = root->Lmax + root->Rmax;
    }
    return Len;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值