7-matplotlib数据可视化--散点图

散点图主要用于2维数据可视化,探求不同变量之间的关系。

scatter函数的参数解读

matplotlib模块中scatter函数语法及参数含义:
plt.scatter(x, y, s=20,
c=None, marker=‘o’,
cmap=None, norm=None,
vmin=None, vmax=None,
alpha=None, linewidths=None,
edgecolors=None)x:指定散点图的x轴数据;
y:指定散点图的y轴数据;
s:指定散点图点的大小,默认为20,通过传入新的变量,实现气泡图的绘制;
c:指定散点图点的颜色,默认为蓝色;
marker:指定散点图点的形状,默认为圆形;
cmap:指定色图,只有当c参数是一个浮点型的数组的时候才起作用;
norm:设置数据亮度,标准化到0~1之间,使用该参数仍需要c为浮点型的数组;
vmin、vmax:亮度设置,与norm类似,如果使用了norm则该参数无效;
alpha:设置散点的透明度;
linewidths:设置散点边界线的宽度;
edgecolors:设置散点边界线的颜色;

一般散点图的绘制

案例:汽车速度与刹车距离的关系

# 导入模块
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# 设置绘图风格
plt.style.use('ggplot')
# 设置中文编码和负号的正常显示
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

# 读入数据
f = open('cars.csv')
cars = pd.read_csv(f)

# 绘图
plt.scatter(cars.speed, # x轴数据为汽车速度
            cars.dist, # y轴数据为汽车的刹车距离
            s = 30, # 设置点的大小 
            c = 'steelblue', # 设置点的颜色
            marker = 's', # 设置点的形状
            alpha = 0.9, # 设置点的透明度
            linewidths = 0.3, # 设置散点边界的粗细
            edgecolors = 'red' # 设置散点边界的颜色
            )

# 添加轴标签和标题
plt.title('汽车速度与刹车距离的关系')
plt.xlabel('汽车速度')
plt.ylabel('刹车距离')

# 去除图边框的顶部刻度和右边刻度
plt.tick_params(top = 'off', right = 'off')

# 显示图形
plt.show()
D:\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
  warnings.warn(message, mplDeprecation, stacklevel=1)

[外链图片转存失败(img-6T2iLU2h-1567909852255)(output_6_1.png)]

这样一张简单的散点图就呈现出来了,很明显的发现,汽车的刹车速度与刹车距离存在正相关关系,即随着速度的增加,刹车距离也在增加。其实这个常识不用绘图都能够发现,关键是通过这个简单的案例,让大家学会如何通过python绘制一个散点图。如果你需要画的散点图,是根据不同的类别进行绘制,如按不同的性别,将散点图区分开来等。这样的散点图该如何绘制呢?

分组散点图的绘制

案例:iris数据集

# 读取数据

f = open('iris.csv')
iris = pd.read_csv(f)

# 自定义颜色
colors = ['steelblue', '#9999ff', '#ff9999']

# 三种不同的花品种
Species = iris.Species.unique()

# 通过循环的方式,完成分组散点图的绘制
for i in range(len(Species)):
    plt.scatter(iris.loc[iris.Species == Species[i], 'Petal.Length'], 
                iris.loc[iris.Species == Species[i], 'Petal.Width'], 
                s = 35, c = colors[i], label = Species[i])

# 添加轴标签和标题
plt.title('花瓣长度与宽度的关系')
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')

# 去除图边框的顶部刻度和右边刻度
plt.tick_params(top = 'off', right = 'off')
# 添加图例
plt.legend(loc = 'upper left')
# 显示图形
plt.show()
D:\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
  warnings.warn(message, mplDeprecation, stacklevel=1)

[外链图片转存失败(img-V2EStXun-1567909852256)(output_10_1.png)]

从图中可以发现,三种花的花瓣长度与宽度之间都存在正向的关系,只不过品种setasa的体型比较小,数据点比较聚集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值