DAU 和 MAU

DAU 和 MAU

日活跃用户占月活跃用户的比例越高,表明用户对App的使用粘性越高。

DAU,即:Daily Active User,指日活跃用户数
MAU,即:Monthly Active User,指月活跃用户数。

*例子1: 如果每天活跃都是同样的用户,例如每天都是1万DAU,那么30天内每天都是这1万用户在活跃,MAU也 是1万,于是DAU/MAU就是100%,用户粘性达到上限,微信就是接近100%的例子。

*例子2: 如果每天活跃用户都不相同,例如每天1万DAU,那么30天内每天的活跃用户都不同,MAU就是30万, 于是DAU/MAU就是1/30,用户完全没有粘性。 对于常见的App,用户粘性的取值范围就是3%~100%,不同领域 的App也会有不同的基准值,例如移动游戏会以20%为基线,而工具类App会以40%为基线。

用户粘性的比率指标

  • 比率指标1- DAU/MAU
    通过用户粘性指标定义为过去一天的DAUDAU比过去30天的MAUMAU
    在这里插入图片描述
  • 比率指标2 - 月平均活跃天数
    在这里插入图片描述
    分子可理解为过去30天用户的总活跃天数,分母为过去30天活跃用户数 ,分子/分母 即为 过去30天的人均活跃天数

原文链接:https://blog.csdn.net/liweijie231/article/details/81451189

MAU (月活跃用户) DAU (日活跃用户) 的预测对于产品运营市场分析至关重要。它帮助团队理解产品的健康状况,并对未来的发展趋势作出预判。 ### 预测 MAU / DAU 的方法 1. **时间序列分析** - 这是一种基于历史数据的趋势外推法,适用于当您的DAU/MAU呈现明显的时间规律性变化时使用。 - 常见工具技术包括ARIMA模型、指数平滑等统计学手段。 2. **机器学习算法** - 对于更复杂的模式识别任务,则可以考虑应用监督式或非监督式的机器学习技术来进行建模训练。例如回归树、随机森林支持向量机都是不错的选择;而深度神经网络在处理大规模复杂特征空间的问题上也有着优异的表现。 3. **分解因素影响** - 分析并量化各个可能的影响因子(如季节效应、节假日特殊事件等因素),通过加权组合的方式构造出最终的增长曲线方程。这一过程通常需要结合业务逻辑深入探讨每个变量之间的内在联系及作用机制。 4. **外部环境监测** - 跟踪行业动态以及宏观经济指标的变化情况对长期走势做出合理估计也十分必要。有时候突发性的政策调整或是竞争对手的新动作都会给现有的增长态势带来较大冲击,在构建预测体系之初就应该把这些不确定要素纳入考量范围之内。 5. **A/B测试** - 如果有条件的话还可以利用A/B实验获取关于特定功能改进效果的第一手反馈信息用于校准完善预测框架的设计思路。 6. **专家判断与经验法则** - 经验丰富的从业者往往能够凭借直觉快速捕捉到潜在的风险点所在,并据此给出具有一定参考价值的意见建议作为辅助决策依据之一。 为了获得最准确的结果,实际操作过程中通常是将以上几种策略相互配合起来综合运用: - 先采用简单的线性拟合或其他基本假设去初步刻画整体变动轮廓; - 再引入更多的细分维度做交叉验证确保结论可靠性; - 最后辅之以定性层面的专业见解进一步优化参数设定直至满意为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值