图的基本概念 (1)

图的基本概念

一、通路、回路基本概念

1.通路、回路定义

·通路:给定图G=(无向图或有向图), G中顶点与边的交替序列£=v0e1v1e2…envn.

​ 其中1<=i<=n, ei=(vi-1,vi), 则称£为v0到vn的通路v0vn分别为通路的起点终点, n(边的条数)为通路的长度

​ 通路就是从一个地点(起点)走到另一个地方(终点),这个地点到这个地方之间你所走的路就是通路。

·回路:若V0=Vn,则称£为回路。

​ 如果终点与始点相同,即走到最后又回到了出发点,这样得到的即是回路 。

2.通(回)路分类

  • 根据顶点分类

    ​ 若通路(回路)中的所有顶点(对于回路,除V0=Vt各异,则称为初级通路(初级回路)

    初级通路又称为路径初级回路又称为

  • 根据边分类

    ​ 若通路(回路)中所有边各异,则称为简单通路(简单回路)否则称为复杂通路(复杂回路)

      首先我们得先理解什么叫路。 在一条路中,若出现的边都不相同,则称该路为初等路,若出现的结点都不相同,则称该路为基本路.如果不满足上述两个条件称为简单回路。  出现的结点都不相同(除起点和终点可以相同外),称该回路为基本回路, 如果不满足上述两个条件称为简单回路。 
    

在这里插入图片描述

3.表示方法

​ (1)用顶点和边交替序列(定义)。 如£=v0e1v1e2…envn

​ (2)用边的序列。 如£=e1e2…env3v4v5

​ (3)简单图中,用顶点的序列。 如:£=v0v1…vn

​ (4)非简单图中,可用混合表示法. 如:£=v0v1e2v2e5v3v4v5

4.关于圈的一些特殊说明

​ (1)环:是长度为1的圈。

​ 两条平行边:两条平行边构成长度为2的圈

​ (2)在无向简单图中:所有圈的长度**>=3**.

​ 在有向简单图中:所有圈的长度**>=2**.

5.不同意义下计算圈的个数

​ (1)定义意义下:在无向图中,一个长度为£(£>=3)看作2£个不同的圈。 如:V0V1V2V0,V1V2V0V1,V2V0V1V2,V0V2V1V0,V1V0V2V1,V2V1V0V2看作6个不同的圈

​ (2) 同构意义下:所有长度相同都是同构的,因而是1个圈

6.通路相关定理以及推论

定理:在n阶图G中,若从顶点uvu ≠ v)存在通路,则从uv存在长度小于等于n-1的通路。

推论:在n阶图G中,若从顶点uvu ≠ v)存在通路,则从uv存在长度小于等于n-1的初级通路。

就像是在数轴上一样,从1到5之间都存在1到2长度为1的距离。

7.回路相关定理以及推论

定理:在一个n阶图G中,若存在v自身的回路,则一定存在v自身长度小于等于n的回路。

推论:在一个n阶图G中,若存在v自身的回路,则一定存在v自身长度小于等于n的初级回路。

地球是圆的,所以可以从你所在地一直向东行走,最终还是会回到原来的地方。

二、连通性(无向图、有向图)

1.无向图的连通性

  • 联通关系: 设无向图G=<V,E>,若u和v之间有通路规定u与自身总连通

  • 连通关系的实质R={<u,v>|u,v ∈ V且u~v}V上的等价关系.

  • ​ **连通图(定义以及特例)**任意两点都连通的图。平凡图也是连通图

  • 联通分支:V关于连通关系R的等价类的导出子图
    eg:
    在这里插入图片描述

2.有向图的连通性

  • 可达关系: 对于一个无向图来说,如果它是连通的,那么它的任意两个顶点之问必存在一条路径,因此,通过这一路径可从一个顶点“到达”另一个顶点,若从顶点“可以到达u,则从u也可以到达“,也即v和u之间是互相可以到达的。 (即我能从这条路去学校,也能在学校从这条路回家)

  • 连通图(弱联通图) :若至少有一对结点不满足单向连通,但去掉边的方向后从无向图的观点看是连通图,则D称为弱连通图. (即我可以从小道去学校)

  • 强连通图: 给定有向图G=(VE),并且给定该图G中的任意两个结点u和v,如果结点u与结点v相互可达,即至少存在一条路径可以由结点u开始,到结点v终止,同时存在至少有一条路径可以由结点v开始,到结点u终止,那么就称该有向图G是强连通图。 (有多条道路可以到达学校,即使中路我选择了其他的拐道)

  • 单向连通图: 若每对结点至少有一个方向是连通的,则D称为单向连通图 。(就像是左拐右拐的道路一样)

  • 关系先后对比: 如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质.

  • 相关定理
    (1)强连通判别法:
    方法一: 可以调用DFS搜索 V 次,V是顶点的个数,就是对每个顶点都做一次DFS搜索,判断是否可达。
    方法二: 可以参考求解连通分量的算法Tarjan算法 。
    (2)单向连通判别法
    方法一:若能证明命题“对于任意W ∈V均存在一个W中节点在G中到W中其余节点都有路”,则定理结论成立。
    方法二: 充分性:若G中有一回路,它至少经过每个顶点一次。则图中任何两个顶点都是相互可达的,可见图G是强连通图

三、边割集

1.定义

​ 设无向图G=<V,E>,E’\subseteqE,若p(G-E’)>p(G)且\forallE’’\subsetE’,p(G-E’’)=p(G),则称E’为G的边割集。若{e}为边割集,则称e为割边或桥。

​ (删边不删顶点哦)

2.注意

​ 若G连通,E’为边割集,则P(G-E’)=2

​ G-e : 从G中删除e

​ G-E’:从G中删除E‘中所有边

​ 对于n阶零图来说,它没有点割集也没有边割集。

e.g. 1、 {e5}是否是下图的边割集?

在这里插入图片描述

​ 答:是。

​ 2、{e2,e3}是否是下图的边割集?

在这里插入图片描述

​ 答:是。

四、点割集

1.定义

​ 设无向图G=<V,E>,V’\subsetV,若p(G-V’)>p(G)且\forallV’’\subsetV’,p(G-V’’)=p(G),则称V’为G的点割集,若{v}为点割集,则称v为割点。

​ ( 弯弯绕绕的符号表示真让人有一点懵)换个容易理解的意思啦!

​ G-V’中,连通变数变多,且对于V’'来说,连通个数不变,此时的V’为G的点割集。

2.注意

​ 若G连通,V’为点割集,则P(G-V’)>=2

​ G-v: 从G中删除v及关联的边

​ G-V’:从G中删除V’中所有的顶点及其关联的边

e.g. 1、{v5}是否是下图的点割集?

在这里插入图片描述

​ 答:是。

​ 2、{v1,v2}是否是下图的点割集?

在这里插入图片描述

​ 答:不是。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小邹子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值