《离散数学》笔记
文章平均质量分 85
本专栏为课程笔记,以《离散数学》课程为主题,旨在将新入学的大学生创建良好的学习环境以及养成良好的学习习惯
小邹子
这个作者很懒,什么都没留下…
展开
-
等价关系、等价类与划分
等价关系、等价类与划分文章目录等价关系、等价类与划分等价关系的定义等价类等价类的性质集合的划分商集等价关系与划分的一一对应等价关系的定义定义:设R为非空集合上的关系。如果R是自反的、对称的和传递的,则称R为A上的等价关系。设R是一 个等价关系,若<x,y> ∈R ,称x等价于y,记作x~y。(即R同时满足自反性、对称性、传递性,则R为A上的等价关系)例1:设A={1,2...,8},如下定义A上的关系R:R={<x,y>|x,y≡∈A∧x原创 2021-07-13 17:59:42 · 32324 阅读 · 2 评论 -
逻辑推理及其方法
逻辑推理文章目录逻辑推理解推理问题的基本方法:判断推理是否正确的方法:判断一个推理形式是否正确,从定义上讲就是判断一个蕴含式是否是重言式数学证明与形式推理的区别:推论定律——重言蕴涵式推理规则构造证明法一、直接证明法二、附加前提证明法三、归谬法(反证法)推理:从前提出发推出结论的思维过程前提:或称假设,是指已知的命题公式A1,A2,…,Ak结论:是从前提出发应用推理规则推出的命题公式正确的推理或有效的推理即是指A1 ∧ A2 ∧ … ∧ Ak → B为重言式,此时称B是A1 ,A2 , … , A原创 2021-07-13 17:51:55 · 10551 阅读 · 0 评论 -
图的基本概念 (1)
图的基本概念文章目录图的基本概念一、通路、回路基本概念1.通路、回路定义2.通(回)路分类`根据顶点分类``根据边分类`3.表示方法4.关于圈的一些特殊说明5.不同意义下计算圈的个数6.通路相关定理以及推论7.回路相关定理以及推论二、连通性(无向图、有向图)1.无向图的连通性2.有向图的连通性相关定理(1)**强连通判别法**:**方法一**: 可以调用DFS搜索 V 次,V是顶点的个数,就是对每个顶点都做一次DFS搜索,判断是否可达。**方法二**: 可以参考求解连通分量的算法Tarjan算法 。(2)原创 2021-06-29 22:29:12 · 2772 阅读 · 0 评论 -
5.1 无向图与有向图
文章目录5.1 无向图及有向图5.1.1 无向图5.1.2 有向图5.1.3 无向图与有向图5.1.4 顶点和边的关联与相邻5.1.5 顶点的度数5.1.6 握手定理**定理****证明****推论**5.1.7 图的度数列5.1.8 多重图与简单图5.1.9 完全图5.1.10 子图5.1.11 补图5.1.12 图的同构5.1 无向图及有向图5.1.1 无向图多重集合:元素可以重复出现的集合定义 无向图G=<V,E>, 其中(1) 顶点集V是非空有穷集合, 其元素称为顶点(2原创 2021-06-28 11:47:40 · 10103 阅读 · 0 评论 -
第七章 树(2)
有向树定义有向树: 基图为无向树的有向图根树: 有一个顶点入度为0, 其余的入度均为1的非平凡的有向树树根: 有向树中入度为0的顶点树叶: 有向树中入度为1, 出度为0的顶点内点: 有向树中入度为1, 出度大于0的顶点分支点: 树根与内点的总称顶点v的层数: 从树根到v的通路长度树高: 有向树中顶点的最大层数上图中v1v_1v1为树根v2,v3,v4,v7,v11v_2,v_3,v_4,v_7,v_{11}v2,v3,v4,v7,v11为内点v5,v6,v8,v原创 2021-06-25 17:57:36 · 3666 阅读 · 0 评论 -
第七章 树(1)
无向树树就是一种特殊的图。比如树可以作为家族树模型,从树根开始往下分支为儿孙。类似于家族谱。也可以表示单位的组织结构,以总经理为树根,下接管理部门经理,在下接具体的部门或系。构成组织管理链。也可以表示目录系统甚至可以表示并行系统。同意通路上的节点为串行节点,不同通路上为并行进程。例如P2 P3为并行,P1,P2为串行。在计算机领域中应用最多的当然是二叉树,其中二叉搜索树是使用最多的解决问题:如何对列表中的元素进行存储,以便容易的找到元素的位置?添加一个新的元素所需要的比较次数原创 2021-06-25 17:14:53 · 968 阅读 · 0 评论 -
5.3 图的矩阵表示
图的矩阵表示前面在二元关系中学过,图可以使用矩阵表示。现在再来学习更多的矩阵表示方法。关联矩阵先来回顾一下关联的定义:设e=(u,v)(<u,v>)是无向(有向)图G=<V,E>的一条边, 称u,v为e的端点,e与u ( v)关联。无向图的关联矩阵定义定义 设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n*m为G的关联矩阵,记为M(G) 。可以看出,原创 2021-06-21 20:44:59 · 3363 阅读 · 0 评论 -
第六章:特殊的图
特殊的图二部图(偶图)定义举个栗子上图两个图形均为二部图,可见从中间切一刀,可将顶点集分为两部分,并且每一条边的两端点刚好分布在两部分之中。此外上述图,上部分每个顶点均与下部分的顶点相连,下部分顶点均与上部分顶点相连,内部不相连,这就是完全二部图,左边是K2,3,右边为K3,3。完全二部图的性质设完全二部图两个划分子集满足∣V1∣=r,∣V2∣=s,|V_1|=r, |V_2|=s,∣V1∣=r,∣V2∣=s,则有:对于所有 ∀vi∈V1,d(vi)=s;∀vj∈V2,d(vj)=原创 2021-06-21 16:45:02 · 4497 阅读 · 0 评论 -
第三章 集合的基本概念和运算
第三章 集合的基本概念和运算文章目录第三章 集合的基本概念和运算3.1 集合的基本概念3.1.1 集合的定义与表示3.1.2 集合与元素3.1.3 集合之间的关系3.1.4 空集3.1.5 全集3.1.6 幂集3.2 集合的基本运算3.2.1 集合基本运算的定义3.2.2 文氏图(维恩图)表示3.2.3 关于运算的说明3.2.4 集合运算的算律3.2.5 集合包含或相等的证明方法3.2.5 集合包含或相等的证明方法3.1 集合的基本概念3.1.1 集合的定义与表示集合:不能精确定义的基本原创 2021-06-19 00:16:31 · 2955 阅读 · 0 评论 -
图论的实际应用
图的应用最短路径带权图G=<V,E,w>,其中w:E−−>R,∀e∈E,w(e)称作e的权。e=(vi,vj),记w(e)=wij.若vi,vj不相邻,记wij=∞带权图G=<V,E,w>, 其中w:E-->R, \forall e \in E , w(e)称作e的权。 e=(vi,vj), 记w(e)=wij . 若vi,vj不相邻, 记wij = \infty 带权图G=<V,E,w>,其中w:E−−>R,∀e∈E,w(e)称作e的权。e=(原创 2021-06-18 18:13:40 · 8504 阅读 · 0 评论 -
命题与联结词
命题与联结词命题的定义命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真、假真命题: 真值为真的命题假命题: 真值为假的命题感叹句、祈使句、疑问句都不是命题。陈述句中的悖论以及判断结果不惟一确定的也不是命题。 例如:我正在说谎话,(这里可以用理发师悖论来理解,真假与是否知道其真假是两个概念。)理发师悖论:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找原创 2021-06-16 12:22:29 · 3092 阅读 · 0 评论 -
二元关系和函数
二元关系和函数文章目录二元关系和函数笛卡儿积1.1 定义**笛卡儿积****n阶笛卡儿积**1.2 性质二元关系2.1 定义2.2 A上关系**定义**设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的关系**计数规则****重要实例**小于等于关系 LA:LA={笛卡儿积1.1 定义笛卡儿积笛卡尔积一般是指笛卡尔乘积, 笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积 ,又称直积。表示为: A×B ={ <x,y> | x∈A ∧ y∈B }n阶笛卡儿原创 2021-06-15 23:25:10 · 3605 阅读 · 1 评论 -
集合A(|A|=n)上可以定义多少种不同的等价关系
离散笔记集合A(|A|=n)上可以定义多少种不同的等价关系?看个栗子再看一个例子一个直观的递归想法代入递归思想一般规律拓展思考集合A(|A|=n)上可以定义多少种不同的等价关系?一个包含n元素的集合A,有2n2^{n}2n个子集,A×AA \times AA×A笛卡尔积集合中有n2n^2n2个元素,对应的不同的二元关系(子集)有2n×n2^{n \times n}2n×n个,那其中有多少个为等价关系呢?看个栗子例: 求出A={1,2,3}上所有的等价关系求解思路:先求出A的所有划分, 然后根据原创 2021-06-07 11:45:06 · 15765 阅读 · 7 评论 -
《离散数学》课程笔记预告
《离散数学》课程笔记重磅推出走过不要错过你想学离散吗不想不,你想!预告1、命题逻辑1.1 命题逻辑1.2 一阶逻辑2、集合论2.1 集合基本概念2.2 二元关系与函数3…本系列笔记由某高校某学院某些班级大一新生整理得出,各位看官请多多期待!peace and love!外链图片转存中…(img-yxbWJNmw-1622463047634)]图片来自网页搜索,侵权告知马删!...原创 2021-05-31 20:16:13 · 176 阅读 · 0 评论