第六章:特殊的图

一、二部图(偶图)

定义

这里是引用

举个栗子
在这里插入图片描述
上图两个图形均为二部图,可见从中间切一刀,可将顶点集分为两部分,并且每一条边的两端点刚好分布在两部分之中。此外上述图,上部分每个顶点均与下部分的顶点相连,下部分顶点均与上部分顶点相连,内部不相连,这就是完全二部图,左边是K2,3,右边为K3,3

完全二部图的性质

设完全二部图两个划分子集满足 ∣ V 1 ∣ = r , ∣ V 2 ∣ = s , |V_1|=r, |V_2|=s, V1=r,V2=s,则有:对于所有 ∀ v i ∈ V 1 , d ( v i ) = s ; ∀ v j ∈ V 2 , d ( v j ) = r \forall v_i \in V_1,d(v_i)=s; \forall v_j \in V_2,d(v_j)=r viV1,d(vi)=s;vjV2,d(vj)=r。其中 d ( v i ) d(v_i) d(vi)为顶点 v i v_i vi的度数。

二部图判断方法

唉,上述图那么有规律当然好分啦。给你来个一般的图
在这里插入图片描述
这个咧?
答案:是二部图
怎么说?

如果图是2-可着色的,那么它就是二部图。

哦?!为啥内?

你猜?

假如我们给上述图用最少颜色着色,要求相邻边不同色(不就是一条边的两端点不在统一集合吗?!),如果只需要使用两种颜色(把顶点分成两个集合),这这这这,不就是二部图的定义吗?!我们验证一下
在这里插入图片描述
上图中,我们是不是可以将红色的分为一个集合,绿色的分为一个顶点集,那么每一条边一端顶点为红色,另外一端为绿色,bingo!

重申: 如果图是2-可着色的,那么它就是二部图。

推论:无向图G=<V,E>是二部图当且仅当G中无奇圈(顶点为奇数的回路)
因为奇圈肯定需要三种SEI!那就不是2-可着色了。
在这里插入图片描述

next!

二、 欧拉图

首先来一个深沉的引入:很久很久以前,有个叫哥尼斯堡的地方,那儿有一条河,河中有两座岛,岛和岛以及岛和两岸之间一共有七座桥,每一座桥都是断魂桥 .因为人们太无聊(bushi),于是乎他们开始挑战:如何不重复经过每座桥回到原点。

说人话
如图:
在这里插入图片描述
我们将两岸和两座岛看做四个顶点,每座桥看做一条边。那么就有了右图,那么问题可以转换为:边不重复地一笔画出整个图。(居然是个趣味挑战题)
经过我的日复一日挑战,事实证明是不行的。

我反复思索:为什么不行呢?
于是乎我从问题本身开始思考:不重复经过每座桥回到原点

回到原点:回路
不重复:硬性要求,不能重复走
经过每座桥:每条边都要走

我悟了:这个图必须存在经过每条边一次且仅一次的回路,才可以。

当然了,我比欧拉先生晚了一点点顿悟。

基本定义

基本定义:这里是引用
显然上述七桥问题是没有这样一条回路的。

但是用定义判断还是太难了,于是我又彻夜思索,有什么快速的判断方法吗?
我又悟了:

判断定理

定理1 无向图G为欧拉图当且仅当G连通且无奇度顶点。
G是半欧拉图当且仅当G连通且恰有两个奇度顶点。

定理2 有向图D是欧拉图当且仅当D连通且每个顶点的入度都等于出度.
D是半欧拉图当且仅当D连通且恰有两个奇度顶点, 其中一个入度比出度大1, 另一个出度比入度大1, 其余顶点的入度等于出度。

我来解释一哈:每个边都经过且经过一次,回到原点,也就意味着不能有奇度顶点,因为会回不去
在这里插入图片描述
反证:假设欧拉图存在奇度顶点,如上图所示,那么必定存在经过每个顶点的回路,因为是回路那么任何一个顶点作为起点都可以绕回路走一周回到自己。不是一般性,我们就以上述顶点为起点,他为奇度顶点。
不失一般性,假设从最上面那条边出发,lalalla,然后从中间这条边回来,然后我们只能从最下边这条边出去了(因为每条边都必须经过且经过一次),那么,那么,我们没有边回来了!!,因为每一条都用过了。和前面假设欧拉回路矛盾。定理为真。

其他的也可以依次证明。

所以回看七桥问题:4个奇度顶点, 不存在欧拉通路, 更不存在欧拉回路。

当然了,我晚出生了几千年吧。。。。悟晚了。

next。

三、 哈密顿图

直接抄课本,我累了
周游世界问题:设每个顶点是一个城市, 有20个城市, 要求从一个城市出发, 恰好经过每一个城市一次, 回到出发点。
在这里插入图片描述
经过球面投影后,可以转换为平面图:
在这里插入图片描述
嗯:还是一样的套路,一笔画,但是这次是经过每个顶点且仅一次的回路。

基本定义

在这里插入图片描述
但是定义仍然不是那么好判断

判断必要条件

但是我们有必要条件
在这里插入图片描述
也就是说,如果是哈密顿图,删除一些顶点,会使得后的图连通分支个数小于等于删除的顶点个数(也就是回路保证了图的连通性)

当然了,这是必要条件,判断是不好使,判断不是哈密顿图,那就好使了

这里是引用
看个例子
在这里插入图片描述
从图中删除d、b两个点,连通分支个数变为3>2,故不是哈密顿图。

小窍门:删除顶点时,优先删除度数高的顶点,因为度数越高,对连通性的贡献越大,删除可以破坏连通性,使得连通分支增多。

判断充分条件

很好,我们学会判断不是,那是。。。。怎么判断呢,请看充分条件
在这里插入图片描述
定理中的条件是充分条件, 但不是必要条件。
例如, n(>=6)个顶点的路径存在哈密顿通路, 但不满足条件。
n(>=5)个顶点的圈是哈密顿图, 不满足条件。

例子(前面的周游列国问题)
在这里插入图片描述
我们可以找到上图这条回路。但是并不满足充分条件。

四、平面图

基本定义

在这里插入图片描述
值得注意这里强调的是能,可以,但不一定以不交叉的形式展示。
在这里插入图片描述
这里图1、2都是平面图,其中图1 可以画成无交叉的形式图2,所以图2是图1 的平面嵌入。

平面图的解释:

平面图相当于把无限大的平面按照这些边切分成若干块,于是有以下概念:

在这里插入图片描述

例子

在这里插入图片描述
上图有4个面,
deg(R1)=1,边界为:a;
deg(R2)=3,边界为:bce;
deg(R3)=2,边界为:fg;
deg(R0)=8,边界为:dcbaed U fg;(回路组)
其中R0为无限面。

解释一下无限面的边界:我们习惯把包围一定范围在内部而称之为边界,而这里对于无限面而言,我们可以从无线远处走回来,会受到上述边的限制,故上述边为边界。

我们可以得到下述定理:

定理 平面图各面的次数之和等于边数的2倍.
证 每条边可能在两个面的公共边界上,也可能只在一个面的边界上。
前者, 在每个面的边界上这条边只出现一次, 计算两次。 后者, 它在这个面的边界上出现2次, 也计算两次。

值得注意的是,对于期末或者其他的考试,必须先将图转换成平面嵌入(也就是没有交叉边)的形式,再判断。

别的概念

定义 若G是简单平面图, 并且在任意两个不相邻的顶点之间加一条新边所得图为非平面图, 则称G为极大平面图。

定义 若G是非平面图, 并且任意删除一条边所得图都是平面图, 则称G为极小非平面图。

定理 (欧拉公式) 设G为n阶m条边r个面的连通平面图, 则
n − m + r = 2 n-m+r=2 nm+r=2

  • 14
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小邹子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值