《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors)

监督学习,多分类、回归

计算输入点与数据集点距离,升序排序,选取数据集里前k个点,计算这k个点对应类别(也就是label)出现的概率,最大概率的分类就是输入点的分类。

目录

一、分类问题

二、监督学习

三、KNN算法原理和流程

1、工作原理

2、一般流程

3、距离计算

4、k值的选择

1)如果选择较小的K值

2)如果选择较大的K值

三、Python代码

1、数据导入

2、算法和关键函数

1)分类算法流程和关键函数

2)文本中解析数据

3)用matplotlib绘制散点图

4)数据归一化

5)使用k-近邻算法的手写识别系统

6)测试算法

3、分类算法

1)分类算法流程

2)kNN中分类算法

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

2)KD树


一、分类问题

             

二、监督学习

                        

三、KNN算法原理和流程

                

1、工作原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系

  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签

  • 一般来说,只选择样本数据集中前N个最相似的数据。分类数K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类。

2、一般流程

  1. 收集数据:可以使用任何方法

  2. 准备数据:距离计算所需要的数值,最后是结构化的数据格式。

  3. 分析数据:可以使用任何方法

  4. 训练算法:(此步骤kNN)中不适用

  5. 测试算法:计算错误率

  6. 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

3、距离计算

                 

          

p=1对应最里面的棱形;p=2对应中间的圆;p=∞对应外面的矩形

4、k值的选择

1)如果选择较小的K

  • “学习”的近似误差(approximation error)会减小,但 “学习”的估计误差(estimation error) 会增大
  • 噪声敏感
  • K值的减小就意味着整体模型变得复杂,容易发生过拟合

2)如果选择较大的K

  • 减少学习的估计误差,但缺点是学习的近似误差会增大
  • K值的增大,就意味着整体的模型变得简单

三、Python代码

1、数据导入

from numpy import *
import operator
def createDataSet():
	group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
	labels=['A','A','B','B']
	return group,lables

group,labels=kNN.createDataSet()

 Python 数组和numpy矩阵的关系:

>>> a=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
>>> c=zeros((3,4))
>>> c
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> c[0,:]=a[0]
>>> c
array([[ 1.,  2.,  3.,  4.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])

2、算法和关键函数

1)分类算法流程和关键函数

  • Shape
group,labels=kNN.createDataSet()
group.shape
group.shape[0]

# shape用法
import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape  #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3
  • Tile
tile([1.0,1.2],(4,1))
# 输出
array([[ 1. ,  1.2],
       [ 1. ,  1.2],
       [ 1. ,  1.2],
       [ 1. ,  1.2]])
tile([1.0,1.2],(4,1))-group
#输出
array([[ 0. ,  0.1],
       [ 0. ,  0.2],
       [ 1. ,  1.2],
       [ 1. ,  1.1]])
a=(tile([1.0,1.2],(4,1))-group)**2
#输出
array([[ 0.  ,  0.01],
       [ 0.  ,  0.04],
       [ 1.  ,  1.44],
       [ 1.  ,  1.21]])
  • Argsort
b=a.sum(axis=1)
c=b**0.5
d=c.argsort()
>>> d
array([0, 1, 3, 2])
  • 字典的使用
classCount={}          #字典
    for i in range(k):    #列表的扩展
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

kNN.classify0([0,0.2],group,labels,3)
>>'B'

2)文本中解析数据

  • 文件读取相关函数Open()、Readlines、Zeros()

3)用matplotlib绘制散点图

import matplotlib
>>> import matplotlib.pyplot as plt

>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>> ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
<matplotlib.collections.PathCollection object at 0x01D8F590>
>>> plt.show()

>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>>ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
>>> plt.show()

4)数据归一化

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals

>>> n,r,m=kNN.autoNorm(datingDataMat)
>>> n
array([[ 0.44832535,  0.39805139,  0.56233353],
       [ 0.15873259,  0.34195467,  0.98724416],
       [ 0.28542943,  0.06892523,  0.47449629],
       ..., 
       [ 0.29115949,  0.50910294,  0.51079493],
       [ 0.52711097,  0.43665451,  0.4290048 ],
       [ 0.47940793,  0.3768091 ,  0.78571804]])
>>> r
array([  9.12730000e+04,   2.09193490e+01,   1.69436100e+00])
>>> m
array([ 0.      ,  0.      ,  0.001156])

5)使用k-近邻算法的手写识别系统

# 准备数据,将图像转换为测试向量 32x32
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

6)测试算法

def datingClassTest():
    hoRatio = 0.50      #hold out 10%
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs))
    print errorCount

>>> testVector=kNN.img2vector('testDigits/0_13.txt')
>>> tesVector[0,0:31]

3、分类算法

1)分类算法流程

对未知类别的数据集中的每个点依次执行以下操作:

  • 计算已知类别数据集众多点与当前点之间的距离
  • 按照距离递增次序排序
  • 选取与当前点距离最小的k个点
  • 群定前k个点所在类别的出现频率

2)kNN中分类算法

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()     
    classCount={}          
    for item in range(k):
        voteIlabel = labels[sortedDistIndicies[item]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

马氏距离(Mahalanobis Distance)

                  

马氏距离NUMPY示例:

import numpy
x = numpy.array([[3,4],[5,6],[2,2],[8,4]])
xT = x.T
D = numpy.cov(xT)
invD = numpy.linalg.inv(D)
tp = x[0] – x[1]
print numpy.sqrt(dot(dot(tp, invD), tp.T)) 
Ø P.C. Mahalanobis提出
Ø 基于 样本分布 的一种距离测量
Ø 考虑到各种 特性之间的联系 (例如身高和体重),可以 消除样本间的相关性
Ø 广泛用于 分类 聚类分析

 

2)KD树

  • KD树是一种对 K 维空间中的实例点进行存储以便对其进行 快速检索 的树形数据结构。
  • KD树是 二叉树 ,表示对K 维空间的一个划分( partition), 构造KD 树相当于不断地用垂直于坐标轴的超平面将 k 维空间切分,构成一系列的 k 维超矩形区域, KD 树的每个结点对应于一个 k 维超矩形区域。
构造KD树
KD树搜索
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值