最大子列和算法

作者:whj95

算法一:双边界单扫描

  该算法为三变量三循环
  核心思想:分别设两个变量确立左边界和右边界,然后再用一个变量当做光标从左边界到右边界扫描求和。
  伪码:

int maxsubseqsum(const int A[],int N)
{
  循环体(i,i < N,i++)
      循环体(j=i,j < N;j++)
          抛弃当前和
          循环体(k=i;k<=j;k++)
      维护当前和与最大和
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{
  int thissum = 0,maxsum = 0;
  for(int i = 0; i <N; i++)
      for(int j = i; j < N; j++)
      {
          thissum = 0;//每次更新边界抛弃之前的thisum值
          for(int k = i; k <= j; k++)
              thissum += A[k];
          if(thissum > maxsum)
              maxsum = thissum;
      }
  return maxsum;
}

  缺陷:所谓光标设置完全没有用,时间复杂度T(N) = O(N 3 )达到了比较恐怖的时间。

算法二:单边界单扫描

  该算法为双变量双循环
  核心思想:设一个变量为左边界,另一个变量从左边界往后扫描即可。
  伪码:

int maxsubseqsum(const int A[],int N)
{
  循环体(i,i < N,i++)
      抛弃当前和
      循环体(j=i,j < N;j++)
      维护当前和与最大和
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{
  int thissum = 0,maxsum = 0;
  for(int i = 0; i < N; i++)
  {
      thisnum = 0;//每次更新边界抛弃之前的thisum值
      for(int j = i; j < N; j++)
        thissum += A[j];
      if(thissum > maxsum)
          maxsum = thissum;
  }
  return maxsum;
}

  缺陷:时间复杂度为T(N) = O(N 2 )还是不够优,考虑如何降到O(NlogN),于是有了算法三。
  

算法三:分治法

  这里写图片描述
  图片源于浙大陈越老师的数据结构课件
  可将问题分治,即分解为规模更小的类似的问题:每次将子列对半拆分,最大子列即为max(①最大左子列②最大右子列③横跨划分线的最大子列)
  伪码:

int maxsubseqmax(int A[],int left,int right)
{
    /*递归部*/
    递归基类
    左子列递归,右子列递归

    /*跨越中部的情况*/
    循环体
    {
        维护当前子列和与最大子列和和
    }//中部向左最大子列
    循环体
    {
        维护当前子列和与最大子列和和
    }//中部向右最大子列

    /*三分归一*/
    返回max(最大左子列,最大右子列,中部向左最大子列+中部向右最大子列)
}

  C++参考代码如下:

int maxsubseqsum(int A[],int left,int right)
{
    /*递归基准*/
    if(left == right)
    {
        if(A[left] > 0)
            return A[left];
        else
            return 0;
    }

    /*左半边右半边递归*/
    int center = (left + right) / 2;
    int maxLeftSum = maxsubseqsum(A,left,center);
    int maxRightSum = maxsubseqsum(A,center + 1,right);

    /*穿过中部的子列 = 中部往左最大子列+中部往右最大子列*/
    int thisLeftBorderSum = 0,maxLeftBorderSum = 0;
    for(int i = center; i >= left; i--)
    {
        thisLeftBorderSum += A[i];
        if(thisLeftBorderSum > maxLeftBorderSum)
            maxLeftBorderSum = thisLeftBorderSum;
    }
    for(int i = center + 1; i >= right; i++)
    {
        thisRightBorderSum += A[i];
        if(thisRightBorderSum > maxRightBorderSum)
            maxRightBorderSum = thisRightBorderSum;
    }

    return max3(maxLeftSum,maxRightSum,maxLeftBorderSum + maxRightBorderSum);
}

/*三分归一*/
int max3(int a,int b,int c)
{
    int max = 0;
    if(a > b)
        max= a;
    else
        max = b;
    max = (max,c)?max:c;
    return max;
}

  缺陷:相比以上两种算法,该算法拥有足够优秀的时间复杂度T(N) = O(NlogN)。推导如下:T(N) = 2T(N/2)+cN = 2[2T(N/2 2 ) + cN/2] + cN = 2 k O(1) + ckN
  ∵N/2 k = 1
  ∴k = log 2 N
  即T(N) = O(NlogN)
  但由于算法四达到了线性时间,所以此算法还并非最优算法。其实该算法在递归基准中也蕴含了算法四的思想。

算法四:单变量在线处理

  核心思想:最大子列和要求的是连续最大。既然连续则扫到的当前子列可以看成一个数,而要求最大则每次维护的当前子列和不能为负(注:不是指单个元素不能为负),否则舍去。
  伪码:

int maxsubseqsum(const int A[],int N)
{
    循环体
    {
        当前子列和 += A[i];
        if(当前子列和>=0)
            维护当前子列和与最大子列和
        if(当前子列和<0)
            舍去当前子列和(令当前子列和=0)
    }
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{
    int thissum = 0,maxsum = 0;
    for(int i = 0; i < N; i++)
    {
        thissum += A[i];
        if(thissum > maxsum)
            maxsum = thissum;
        if(thissum < 0)
            thissum = 0;
    }
}

  缺陷:无。
  该算法是此问题的终极算法,时间复杂度T(N) = O(N),仅为线性时间,而且其为在线处理,即突然切除后面的数据也能得出新子列的最大子列。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值