LeetCode——Rotate Image

You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

  • Example 1:
    Given input matrix =
    [
    [1,2,3],
    [4,5,6],
    [7,8,9]
    ],
    rotate the input matrix in-place such that it becomes:
    [
    [7,4,1],
    [8,5,2],
    [9,6,3]
    ]
  • Example 2:
    Given input matrix =
    [
    [ 5, 1, 9,11],
    [ 2, 4, 8,10],
    [13, 3, 6, 7],
    [15,14,12,16]
    ],
    rotate the input matrix in-place such that it becomes:
    [
    [15,13, 2, 5],
    [14, 3, 4, 1],
    [12, 6, 8, 9],
    [16, 7,10,11]
    ]

解法

以第二个例子为例,先把矩阵左右翻转:

5     1     9     11              11    9    1    5
2     4     8     10--------->    10    8    4    2
13    3     6      7               7    6    3   13
15   14    12     16              16   12   14   15

然后按主对角线翻转就可以得到旋转后的矩阵了

11    9    1    5          15   13    2    5
10    8    4    2--------->14    3    4    1
7     6    3   13          12    6    8    9
16   12   14   15          16    7   10   11
public void rotate(int[][] matrix) {
		int n=matrix.length;
		//左右翻转
        for(int j=0;j<n/2;j++)
        	for(int i=0;i<n;i++)
        		swap(matrix,i,j,i,n-j-1);
        //对角线翻转
        for(int i=0;i<n-1;i++)
        	for(int j=0;j<n-1-i;j++)
        		swap(matrix,i,j,n-1-j,n-1-i);
    }
	private void swap(int[][] matrix, int i, int j, int p, int q) {
		// TODO Auto-generated method stub
		int tmp=matrix[i][j];
		matrix[i][j]=matrix[p][q];
		matrix[p][q]=tmp;
	}

Runtime: 1 ms, faster than 100.00% of Java online submissions for Rotate Image.
Memory Usage: 37.4 MB, less than 23.54% of Java online submissions for Rotate Image
.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值