期望和方差

5人阅读 评论(0) 收藏 举报
分类:

点击打开链接https://blog.csdn.net/supinyu/article/details/52164178

点击打开链接https://blog.csdn.net/chaipp0607/article/details/77466436







1、下面算式理解(纯属个人理解,有误请谅解):

第i位一共有m个0,n个1;

即第i位一共有m+n位;

m个0:每个0都有2种选取情况,取或者不取。

n个1,同样的道理,每个1都可以取或者不取。

因此总共存在的情况数目为分母:如下

又因为事件的概率只和1的个数有关,并且必须为奇数个1;

m个0,每一0对应选取或者不选取2种情况,0的个数对于最后的异或值没有影响;

并且0的选取个数和最后异或的结果值=1没有关系;

只和1的个数有关,只有1的个数为奇数个才符合要求,所以再计算取1的所有情况;

2、下面的公式个人理解(纯属个人理解,不保证百分百正确):

某二进制从低位开始数(从0开始计数),则第i位对应的十进制数正好是2^i,因此将第i位为1和第i位为0分别计算,则得到了截图中公式的第二行。


3、1025变成1024的情况分析:


这意味着,2^7,2^8,2^9着三位永远只能是0,根本就没有1,所在在计算最后的期望的时候把这三位记为0就好了,所以结果是275.5。


查看评论

期望与方差之重要概念总结

方差计算公式
  • njustzj001
  • njustzj001
  • 2014-10-12 11:37:07
  • 1310

协方差,方差,期望的意义

今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差...
  • u013096627
  • u013096627
  • 2015-06-24 21:30:48
  • 810

统计-均值,期望,方差,协方差,协方差矩阵

统计 ,均值,期望,方差,协方差,协方差矩阵
  • wenxuegeng
  • wenxuegeng
  • 2016-05-23 12:28:56
  • 2985

常见分布的期望与方差以及图形

Preface总结这篇文章,是因为在之前的面试过程中被问到过此类的问题,总结下来加深印象。公式以及图形(0-1)分布:二项分布:二项分布图形:泊松分布: 当n很大p很小的时候的二项分布的特殊形式泊松...
  • duankaifei
  • duankaifei
  • 2015-03-06 15:09:12
  • 3362

期望、方差、协方差及相关系数的原理理解和计算

一、期望 定义:   设P(x)是一个离散概率分布函数自变量的取值范围是。那么其期望被定义为:                                                   ...
  • qq_29540745
  • qq_29540745
  • 2016-08-05 23:01:47
  • 2866

概率统计与机器学习:期望,方差,数学期望,样本均值,样本方差之间的区别

1.样本均值:我们有n个样本,每个样本的观测值为Xi,那么样本均值指的是 1/n * ∑x(i),求n个观测值的平均值 2.数学期望:就是样本均值,是随机变量,即样本数其实并不是确定的 PS:从概率...
  • qq_33638791
  • qq_33638791
  • 2017-07-09 14:21:27
  • 5071

二项分布的期望方差证明

二项分布的期望方差证明
  • u011240016
  • u011240016
  • 2016-11-18 10:36:57
  • 12080

期望、方差、协方差及相关系数的基本运算

转自http://blog.codinglabs.org/articles/basic-statistics-calculate.html 这篇文章总结了概率统计中期望、方差、协方差和相关系数的...
  • chuminnan2010
  • chuminnan2010
  • 2014-03-18 15:02:10
  • 3678

概率论 各种分布及其期望、方差、分布函数

概率论 各种分布及其期望方差分布函数 0-1分布 二项分布 Xbnp 泊松分布 Xpilambda 均匀分布 XUab 指数分布 正态高斯分布 XN2musigma2 2chi 2分布 22nchi...
  • Ga4ra
  • Ga4ra
  • 2017-12-29 23:13:15
  • 703

【Derivation】随机过程及应用(三) - 高斯分布/正态分布的期望和方差

Provement of Gaussian Distribution: 设正态分布概率密度函数是 f(x)=12π−−√σ∗e−(x−u)22σ2f(x)=\frac{1}{\sqrt{2π}...
  • u013346007
  • u013346007
  • 2016-09-18 22:27:31
  • 1855
    个人资料
    持之以恒
    等级:
    访问量: 1450
    积分: 178
    排名: 103万+
    文章存档