期望和方差

点击打开链接https://blog.csdn.net/supinyu/article/details/52164178

点击打开链接https://blog.csdn.net/chaipp0607/article/details/77466436







1、下面算式理解(纯属个人理解,有误请谅解):

第i位一共有m个0,n个1;

即第i位一共有m+n位;

m个0:每个0都有2种选取情况,取或者不取。

n个1,同样的道理,每个1都可以取或者不取。

因此总共存在的情况数目为分母:如下

又因为事件的概率只和1的个数有关,并且必须为奇数个1;

m个0,每一0对应选取或者不选取2种情况,0的个数对于最后的异或值没有影响;

并且0的选取个数和最后异或的结果值=1没有关系;

只和1的个数有关,只有1的个数为奇数个才符合要求,所以再计算取1的所有情况;

2、下面的公式个人理解(纯属个人理解,不保证百分百正确):

某二进制从低位开始数(从0开始计数),则第i位对应的十进制数正好是2^i,因此将第i位为1和第i位为0分别计算,则得到了截图中公式的第二行。


3、1025变成1024的情况分析:


这意味着,2^7,2^8,2^9着三位永远只能是0,根本就没有1,所在在计算最后的期望的时候把这三位记为0就好了,所以结果是275.5。


阅读更多
个人分类: 插值算法
上一篇克里金插值的定义----普通克里金插值算法
下一篇期望,方差,协方差计算法则
想对作者说点什么? 我来说一句

均匀分布的期望方差

CHS007chs CHS007chs

2017-09-29 14:34:24

阅读数:1719

没有更多推荐了,返回首页

关闭
关闭