cuda安装教程+cudnn安装教程

cuda9.0+cudnn7.0安装教程

 

1、下载cuda9.0

下载链接:https://developer.nvidia.com/cuda-toolkit-archive

 

2、安装cuda

安装cuda时,第一次会让设置临时解压目录,第二次会让设置安装目录;

临时解压路径,建议默认即可,也可以自定义。安装结束后,临时解压文件夹会自动删除;

安装目录,建议默认即可;

注意:临时解压目录千万不要和cuda的安装路径设置成一样的,否则安装结束,会找不到安装目录的!!!

选择自定义安装

安装完成后,配置cuda的环境变量;

命令行中,测试是否安装成功;

 

步骤如下(部分过程图):

安装完成,先查看系统变量,然后添加cuda的系统变量:

查看:

添加系统变量后如下图所示:

 

测试:

win+R

nvcc -V

nvcc --version

显示cuda版本号9.0   V9.0.176

说明安装成功!

 

3、cudnn下载

官网下载:https://developer.nvidia.com/rdp/cudnn-archive

4、cudnn安装

解压文件夹,将解压后的文件夹下的文件拷贝到cuda安装目录下,与之相对应的文件夹下。

完成!

 

 

5、参考链接:

https://blog.csdn.net/u010618587/article/details/82940528

https://blog.csdn.net/weixin_39290638/article/details/80045236

https://blog.csdn.net/asd136912/article/details/79383161

https://blog.csdn.net/Eppley/article/details/79297503

 

 

### CUDA 安装教程 (针对 DeepSeek) 对于希望在 Windows 上安装 CUDA 并准备运行 DeepSeek 的用户来说,确保系统环境满足 DeepSeek 所需的最低要求至关重要。为了使 DeepSeek 能够顺利利用 GPU 加速功能,建议按照如下方法来设置 CUDA 环境。 #### 验证现有 CUDA 版本 在开始之前,应当先确认当前计算机上已有的 NVIDIA 显卡驱动程序以及 CUDA Toolkit 是否兼容于 DeepSeek。通过命令提示符执行 `nvidia-smi` 可查看显卡状态及所支持的 CUDA 版本号[^2]。如果显示的结果表明现有的 CUDA 版本低于 11.8,则需要更新至更高版本以匹配 DeepSeek 对硬件的要求。 #### 下载并安装最新版 CUDA Toolkit 访问[NVIDIA 开发者官网](https://developer.nvidia.com/cuda-downloads),根据操作系统选择合适的 CUDA Toolkit 版本进行下载。推荐选用最新的稳定发行版,因为这通常会带来更好的性能优化和支持更多的图形处理单元型号。完成下载后依照官方指引逐步完成安装过程即可。 #### 设置环境变量 成功安装完成后,还需要适当调整系统的 PATH 和其他相关环境变量以便让 Python 或其他编程工具能够识别到新安装的库文件位置。具体操作方式取决于个人使用的开发平台,在此不做赘述;一般情况下,默认选项已经足够满足大多数应用场景的需求。 #### 测试 CUDA 功能正常与否 最后一步是验证整个安装流程是否无误。可以编写一段简单的 PyTorch 或 TensorFlow 示例代码来进行测试: ```python import torch if torch.cuda.is_available(): print(f"CUDA is available! Using {torch.cuda.get_device_name(0)}") else: print("CUDA not found.") ``` 上述脚本能帮助快速判断 CUDA 设备能否被正确检测出来,并显示出具体的设备名称作为进一步调试的信息依据。
评论 43
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值