邻接矩阵基础的Prime算法(最小生成矩阵)

普利姆算法适用于稠密图的最小生成树求解,时间复杂度为O(n*n)。算法流程包括将顶点分为已处理和未处理两部分,不断选取与已处理顶点关联的边权值最小的顶点加入已处理集合,直至所有顶点处理完毕。文中通过C++代码实现,从输入文件读取节点和权重,输出最小生成树结果。
摘要由CSDN通过智能技术生成

算法描述:

普利姆算法求最小生成树时候,和边数无关,只和定点的数量相关,所以适合求稠密网的最小生成树,时间复杂度为O(n*n)。

算法过程:

1.将一个图的顶点分为两部分,一部分是最小生成树中的结点(A集合),另一部分是未处理的结点(B集合)。

2.首先选择一个结点,将这个结点加入A中,然后,对集合A中的顶点遍历,找出A中顶点关联的边权值最小的那个(设为v),将此顶点从B中删除,加入集合A中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值