《机器学习》周志华第一章参考答案

1.1 版本空间

答:一共有7种。
因为所有的好瓜坏瓜分别只有一种,所以可以由最特殊的逐步“泛化”,只要不是全部为*就不会出错。同时存在好瓜的样本,则一定不是空集。
1. 青绿^蜷曲^浊响=好瓜
2. *^蜷曲^浊响=好瓜
3. 青绿^ * ^浊响=好瓜
4. 青绿^蜷曲^ * =好瓜
5. 青绿^ * ^ * =好瓜
6. * ^蜷曲^ * =好瓜
7. * ^ * ^浊响=好瓜

1.2估算假设空间大小

答:首先单个合取式有3*4*4=49种;

这里要说明一下,数据是完全按照表1.1进行计算,在表1.1中,色泽只有青绿和乌黑,不考虑下文中作者的假设中包含的浅白。如果考虑浅白,则这里答案4*4*4+1=65种。
在不考虑任何冗余的情况下,是一个简单的组合问题,从49中选择1/2/3/…/k个的组合之和。
考虑冗余,= =好难。

1.3偏好设计

首先有可能不存在与所有训练样本都一致的假设,也就意味着出现了特征完全一样但是label不一样。具体来说就是,只要没有出现【特征一样label不一样】的情况,最少能找到一个唯一的限定的假设。比如拿西瓜来说,不管数据怎样,只要没有矛盾的数据,我们可以把每种情况都列出来作为最终假设。
下面是我的一些偏好:
1. 谨慎。对于出现训练样本特征一样label不一致的,则把所有不一致数据都作为不可用数据。
2. 乐观。对于不一致的则认为是【好瓜】。
3. 悲观。【坏瓜】

1.4证明

答:之前是严格的true or false,如果h(x)=f(x)则认为没有误差,一旦不相等则记为一次误差。这里用l()函数,可以认为l是一个度量h(x)与f(x)之间差距的函数。证明过程略了,数学功底不够。

1.5机器学习在互联网搜索哪些环节起作用

答:预测输入,输入匹配,网页匹配度,智能抓取,预加载,网页排序。

机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课
1. 什么是泛化能力?泛化能力和过拟合之间有什么关系? 泛化能力是指模型在新的、未见过的数据上的表现能力。模型的泛化能力与其对训练数据的拟合程度有关,通常来说,过拟合的模型泛化能力较差。 2. 什么是交叉验证?交叉验证的作用是什么? 交叉验证是一种通过将数据集分成若干个子集来进行模型评估的方法。具体地,将数据集分成k个子集,每个子集都轮流作为测试集,其余子集作为训练集,重复k次,最终得到k个模型的评估结果的平均值。交叉验证的作用是提高模型评估的可靠性和泛化能力。 3. 留出法、k折交叉验证和留一法的区别是什么?它们各自适用于什么情况? 留出法是将数据集分成两部分,一部分作为训练集,另一部分作为测试集。留出法适用于数据集较大的情况。 k折交叉验证是将数据集分成k个子集,每个子集都轮流作为测试集,其余子集作为训练集,重复k次,最终得到k个模型的评估结果的平均值。k折交叉验证适用于数据集较小的情况。 留一法是k折交叉验证的一种特殊情况,即将数据集分成n个子集,每个子集都作为测试集,其余子集作为训练集,重复n次。留一法适用于数据集较小且样本数较少的情况。 4. 为什么要对数据进行预处理?数据预处理的方法有哪些? 数据预处理可以提高模型的表现,并且可以减少过拟合的风险。数据预处理的方法包括:标准化、归一化、缺失值填充、特征选择、特征降维等。 5. 什么是特征选择?特征选择的方法有哪些? 特征选择是指从所有特征中选择出对模型预测结果有重要贡献的特征。特征选择的方法包括:过滤式方法、包裹式方法和嵌入式方法。其中,过滤式方法是基于特征间的关系进行特征选择,包裹式方法是基于模型的性能进行特征选择,嵌入式方法是将特征选择嵌入到模型训练中。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值