《机器学习》周志华第一章参考答案

1.1 版本空间

答:一共有7种。
因为所有的好瓜坏瓜分别只有一种,所以可以由最特殊的逐步“泛化”,只要不是全部为*就不会出错。同时存在好瓜的样本,则一定不是空集。
1. 青绿^蜷曲^浊响=好瓜
2. *^蜷曲^浊响=好瓜
3. 青绿^ * ^浊响=好瓜
4. 青绿^蜷曲^ * =好瓜
5. 青绿^ * ^ * =好瓜
6. * ^蜷曲^ * =好瓜
7. * ^ * ^浊响=好瓜

1.2估算假设空间大小

答:首先单个合取式有3*4*4=49种;

这里要说明一下,数据是完全按照表1.1进行计算,在表1.1中,色泽只有青绿和乌黑,不考虑下文中作者的假设中包含的浅白。如果考虑浅白,则这里答案4*4*4+1=65种。
在不考虑任何冗余的情况下,是一个简单的组合问题,从49中选择1/2/3/…/k个的组合之和。
考虑冗余,= =好难。

1.3偏好设计

首先有可能不存在与所有训练样本都一致的假设,也就意味着出现了特征完全一样但是label不一样。具体来说就是,只要没有出现【特征一样label不一样】的情况,最少能找到一个唯一的限定的假设。比如拿西瓜来说,不管数据怎样,只要没有矛盾的数据,我们可以把每种情况都列出来作为最终假设。
下面是我的一些偏好:
1. 谨慎。对于出现训练样本特征一样label不一致的,则把所有不一致数据都作为不可用数据。
2. 乐观。对于不一致的则认为是【好瓜】。
3. 悲观。【坏瓜】

1.4证明

答:之前是严格的true or false,如果h(x)=f(x)则认为没有误差,一旦不相等则记为一次误差。这里用l()函数,可以认为l是一个度量h(x)与f(x)之间差距的函数。证明过程略了,数学功底不够。

1.5机器学习在互联网搜索哪些环节起作用

答:预测输入,输入匹配,网页匹配度,智能抓取,预加载,网页排序。

机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课
### 关于周志华机器学习》(西瓜书)第二章的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值