简单ocr识别加c++本地识别接口实现

本文详述了使用Caffe框架训练CRNN模型进行数字串识别的过程,包括数据准备、模型训练、避免过拟合以及模型测试。在VS2013中封装了本地C++识别接口,依赖于OpenCV和Caffe库,实验结果显示在6000多条测试数据上识别精度可达89%。
摘要由CSDN通过智能技术生成

*本博客主要是记录在caffe(添加了新层)框架上训练数字串识别算法crnn的模型,用VS2013封装一个识别数字串的接口。

1. crnn模型训练

框架crnn.caffe在github上的地址
数据准备图片标签:+2_XXX.jpg
数据增强到了六万,只识别0~9,+,-,. 等(可能数据还没达到十万量级识别精度欠佳)
模型训练:
训练模型时需要resize到128*32,为了避免拉抻变形,所以这里需要在原始图片周围加上padding。加了padding之后的图片这样在算法中resize时就不会变形严重。
训练步骤可以根据github指导逐步训练,网络结构可以根据自己的算法进行调整。
注意避免模型过拟合
模型测试:cpp_recognition中提供了测试的接口;
测试代码稍微改了下
`

#include <gflags/gflags.h>
#include <glog/logging.h>
#include "boost/algorithm/string.hpp"
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <vector>
#include <utility>
#include <iosfwd>
#include <string>
#include <iostream>

#include "glob.h"

#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace caffe;
using namespace std;
using namespace cv;

const int BLANK_LABEL = 13;


class Classifier {
 public:
  Classifier(const string& model_file,const string& trained_file,int blank_label);
  std::vector<int> Classify(const cv::Mat& img, int N = 1);
 private:
  std::vector<int> Predict(const cv::Mat& img
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值