Pandas 处理DataFrame中的inf值

本文介绍了在使用DataFrame进行数据处理时,如何有效处理计算变化率过程中产生的inf值。通过运用numpy库,提供了三种实用的方法:1. 将特定列中的inf替换为固定数值;2. 将特定列中的inf替换为NA值;3. 将整个DataFrame中的inf替换为数值或NA值。
摘要由CSDN通过智能技术生成

在用DataFrame计算变化率时,例如(今天-昨天) / 昨天恰好为(2-0) / 0时,这些结果数据会变为inf。

为了方便后续处理,可以利用numpy,将这些inf值进行替换。

1. 将某1列(series格式)中的 inf 替换为数值。

import numpy as np

df['Col'][np.isinf(df['Col'])] = -1

2. 将某1列(series格式)中的 inf 替换为NA值。

import numpy as np

df['Col'][np.isinf(df['Col'])] = np.nan

3. 将整个DataFrame中的 inf 替换为数值(空值同理)。#感谢评论区的补充

import numpy as np

df.replace(np.inf, -1) #替换正inf为-1

#替换正负inf为NA,加inplace参数 
df.replace([np.inf, -np.inf], np.nan, inplace=True)

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值