抖音推荐算法总结

抖音推荐算法究竟如何是做抖音短视频运营的同学非常关心的问题,抖音官方并没有披露正式的算法,但凭借着民间的智慧和官方披露的部分信息中,网友已经总结出抖音推荐算法的秘密。这里整理资料如下:

1. 发布后的推荐流程

第0步:双重审核

在抖音,每天有数量庞大的新作品上传,纯靠机器审核容易被钻空子,纯靠人工审核又不太现实。因此,双重审核成为抖音算法筛选视频内容的第一道门槛。

  • 机器审核(检测是否违规或重复):一般是通过提前设置好的人工智能模型来识别你的视频画面和关键词,它主要有两个关键作用:其一,审核作品、文案中是否存在违规行为,如果疑似存在,就会被机器拦截,通过飘黄、标红等提示人工注意;其二,通过抽取视频中的画面、关键帧,与抖音大数据库中已存在的海量作品进行匹配消重,内容重复的作品进行低流量推荐,或者降权推荐(仅粉丝可见、仅自己可见)。
  • 人工审核(检测标题、封面和关键帧):主要集中在3块:视频标题、封面截图和视频关键帧。针对机器审核筛选出疑似违规作品,以及容易出现违规领域的作品,抖音审核人员进行逐个细致审核。如果确定违规,将根据违规账号进行删除视频、降权通告、封禁账号等处罚。

第一步:冷启动

抖音的推荐算法机制是著名的信息流漏斗算法,也是今日头条的核心算法。通过审核后,第一步叫冷启动流量池曝光,比如你今天上传一个视频,通过双重审核的作品,系统将会分配给你一个初始流量池:200-300在线用户(也可能有上千个曝光)。不论你是不是大号,只要你有能力产出优质内容,就有机会跟大号竞争。

第二步:数据加权

抖音会根据这1000次曝光所产出的数据,结合你账号分值来分析是否给你加权,比如完播率、点赞、关注、评论、转发、转粉、游览深度等。

以上这些都会对你的短视频数据造成影响,以及对你的短视频作出是否要加权的判断,然后会挑选前10%的视频,再增加1万次曝光。

 

第三步:加大推荐

这一步会给数据好的短视频进行更大的加权,并且会在第三步强化人群标签分发,让内容分发的更加精准,这类似猜你喜欢的打标,视频是有标签的,用户也是有标签的,两者之间会做标签匹配。

第四步:进入精品推荐池

进入精品推荐池,大规模曝光,一旦进入精品推荐后,人群标签就被弱化了,就像当年温婉的视频,几乎每个抖音用户都会刷到温婉的视频。

 

2. 延后“引爆”

不少抖音运营者会发现,有些内容发布的当天、一周甚至一个月内都数据平平,但突然有一天就火了,为什么?两种原因:

第一种,被很多老司机戏称为“挖坟”。它是指抖音会重新挖掘数据库里的“优质老内容”,并给它更多的曝光。这些老作品之所以能被“引爆”,首当其冲是它的内容够好,其次,是你的账号已经发布了很多足够垂直的内容,标签变得更清晰,系统能够匹配给你更精准的用户。优质内容+精准用户,老作品重新火爆起来就不意外了。

第二种,我们可以称之为“爆款效应”,它是指,你的某一个作品在获得大量曝光(几百万,甚至千万级)时,会带来巨量用户进入你的个人主页,去翻看你之前的作品。如果你的某一个作品,能够获得足够多的关注(转评赞),系统将会把这些视频重新放入推荐池。很多垂直内容的创作者,往往都是因为某一个视频的“火爆”,直接把其他几个优质视频“点燃”,形成多点开花,全盘爆炸引流的盛况。

 

3. 流量触顶

抖音作品经过双重审核、初始推荐、叠加推荐层层引爆之后,通常会给账号带来大量的曝光、互动和粉丝。而这种高推荐曝光的时间,一般不会超过一周。之后,爆款视频乃至整个账号会迅速冷却下来,甚至后续之后发布的一些作品也很难有较高的推荐量。为什么?

抖音每天的日活是有限的,也就是说总的推荐量是基本固定的:一方面,跟你内容相关标签的人群基本完成推荐,其他非精准标签人群反馈效果差,所以停止推荐;另一方面,抖音也不希望某个账号迅速火起来,而是通过一轮轮考验,考验你的内容再创新能力,考验你持续输出优质内容的能力。

<think>好的,用户问的是如何在多云平台(MCP)上集成Java和LangChain。首先,我需要明确用户的问题背景。LangChain是一个用于构建基于语言模型的应用程序的框架,通常与Python关联较多,而用户想用Java集成,这可能涉及到跨语言调用或者Java库的支持。另外,多云平台的环境需要考虑部署、服务发现、配置管理等问题。 首先,我应该确认LangChain是否有官方的Java支持。查阅资料发现,LangChain主要用Python开发,但可能有社区驱动的Java库或适配层。如果存在这样的库,集成步骤可能包括添加依赖、配置API密钥、编写链式逻辑等。如果不存在,可能需要通过REST API或gRPC与Python服务交互,这涉及到跨语言通信。 其次,多云平台的环境下,需要考虑如何部署Java应用和LangChain服务。可能需要容器化部署,使用Kubernetes进行编排,每个云平台上的集群需要统一的配置管理。此外,服务发现和负载均衡是关键,确保Java应用能够动态发现LangChain服务的实例。 然后,配置管理方面,需要将不同云平台的配置外部化,比如使用Spring Cloud Config或者Kubernetes ConfigMap。敏感信息如API密钥应通过Secrets管理,确保安全性。 接下来,分布式追踪和监控也是重要的一环。集成Jaeger或Zipkin来跟踪跨服务的请求,帮助排查问题。日志管理可能需要ELK栈或类似工具,确保日志集中存储和分析。 另外,用户可能需要处理多云平台的异构环境,比如不同云的存储服务。Java应用需要抽象这些差异,可能通过LangChain的模块化设计,或者使用多云存储解决方案如MinIO。 最后,需要考虑性能优化和容错机制,比如重试策略、熔断机制,使用Resilience4j等库来增强应用的健壮性。同时,自动化部署和CI/CD流程也是集成的一部分,确保代码在多云环境中顺利部署。 总结来说,集成步骤可能包括:环境准备、依赖管理、服务部署、配置管理、跨语言通信、监控追踪、多云适配和自动化部署。需要分步骤指导用户,并提醒可能的注意事项,比如Java与Python的交互延迟、版本兼容性等。</think>### Java与LangChain在多云平台(MCP)上的集成步骤 #### 1. **环境准备与依赖管理** - **LangChain服务部署**:若LangChain无原生Java SDK,需通过容器化部署Python服务并提供REST/gRPC接口。例如: ```python # LangChain服务端示例(Python) from fastapi import FastAPI from langchain.llms import OpenAI app = FastAPI() llm = OpenAI(api_key="YOUR_API_KEY") @app.post("/generate") def generate_text(prompt: str): return llm(prompt) ``` - **Java依赖配置**:通过Spring Boot或Quarkus框架集成HTTP客户端调用LangChain服务: ```xml <!-- Maven依赖示例 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-webflux</artifactId> </dependency> ``` #### 2. **多云平台适配** - **服务发现**:利用Kubernetes的Service对象或Istio实现跨云服务发现: ```yaml # Kubernetes Service示例 apiVersion: v1 kind: Service metadata: name: langchain-service spec: selector: app: langchain ports: - protocol: TCP port: 8080 targetPort: 8080 ``` - **配置管理**:使用Spring Cloud Config或HashiCorp Vault统一管理多环境配置: ```java // Java代码读取配置 @Value("${langchain.endpoint}") private String langchainEndpoint; ``` #### 3. **跨语言通信实现** - **HTTP调用示例**: ```java // Spring WebClient调用LangChain服务 public Mono<String> generateText(String prompt) { return WebClient.create() .post() .uri(langchainEndpoint + "/generate") .bodyValue(Map.of("prompt", prompt)) .retrieve() .bodyToMono(String.class); } ``` #### 4. **分布式追踪集成** - 集成Jaeger或Zipkin追踪跨云请求链路: ```java // Spring Cloud Sleuth + Zipkin配置 spring.zipkin.base-url=http://zipkin-server:9411 spring.sleuth.sampler.probability=1.0 ``` #### 5. **多云存储与数据处理** - 使用LangChain的文档加载模块适配多云存储(如AWS S3、Azure Blob): ```java // 伪代码示例:从S3加载文档 public String loadFromS3(String bucket, String key) { AmazonS3 s3Client = AmazonS3ClientBuilder.standard().build(); return s3Client.getObjectAsString(bucket, key); } ``` #### 6. **安全与治理** - **API密钥管理**:通过Kubernetes Secrets注入环境变量: ```yaml env: - name: LANGCHAIN_API_KEY valueFrom: secretKeyRef: name: langchain-secrets key: api-key ``` #### 7. **性能优化** - 添加缓存层(如Redis)减少对LangChain服务的重复调用: ```java @Cacheable("promptResponses") public String getCachedResponse(String prompt) { return generateText(prompt).block(); } ``` --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值