FastAPI 构建 API 高性能的 web 框架(二)

上一篇 FastAPI 构建 API 高性能的 web 框架(一)是把LLM模型使用Fastapi的一些例子,本篇简单来看一下FastAPI的一些细节。
有中文官方文档:fastapi中文文档

假如你想将应用程序部署到生产环境,你可能要执行以下操作:

pip install fastapi

并且安装uvicorn来作为服务器:

pip install "uvicorn[standard]"

然后对你想使用的每个可选依赖项也执行相同的操作。



1 基础使用

参考:https://fastapi.tiangolo.com/zh/tutorial/body-multiple-params/

1.1 单个值Query的使用

from typing import Union

from fastapi import FastAPI, Query

app = FastAPI()


@app.get("/items/")
async def read_items(q: Union[str, None] = Query(default=None, max_length=50)):
    results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
    if q:
        results.update({"q": q})
    return results

这里Union[str, None] 代表参数q,可以是字符型也可以None不填,Query用来更多的补充信息,比如这个参数,默认值是None,最大长度50

1.2 多个参数

from typing import Annotated

from fastapi import FastAPI, Path
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
# 检查项,不同key要遵从什么格式
    name: str
    description: str | None = None # 字符或者None都可以,默认None
    price: float
    tax: float | None = None # 数值或者None都可以,默认None


@app.put("/items/{item_id}")
async def update_item(
    item_id: Annotated[int, Path(title="The ID of the item to get", ge=0, le=1000)], # item_id是一个路径,通过Annotated需要两次验证,验证一,是否是整数型,验证二,数值大小 大于等于0,小于等于1000
    q: str | None = None, 
    item: Item | None = None, # 格式遵从class Item类且默认为None
):
    results = {"item_id": item_id}
    if q:
        results.update({"q": q})
    if item:
        results.update({"item": item})
    return results

1.3 请求参数 Field

pydantic中比较常见

from typing import Annotated

from fastapi import Body, FastAPI
from pydantic import BaseModel, Field

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = Field(
        default=None, title="The description of the item", max_length=300
    )
    # 跟Query比较相似,设置默认,title解释,最大长度300
    price: float = Field(gt=0, description="The price must be greater than zero")
    # price大于0,且是float形式
    tax: float | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Annotated[Item, Body(embed=True)]):
    results = {"item_id": item_id, "item": item}
    return results

1.4 响应模型response_model

参考:https://fastapi.tiangolo.com/zh/tutorial/response-model/

from typing import Any

from fastapi import FastAPI
from pydantic import BaseModel, EmailStr

app = FastAPI()


class UserIn(BaseModel):
    username: str
    password: str
    email: EmailStr
    full_name: str | None = None


class UserOut(BaseModel):
    username: str
    email: EmailStr
    full_name: str | None = None


@app.post("/user/", response_model=UserOut)
async def create_user(user: UserIn) -> Any:
    return user

response_model是控制输出的内容,按照规定的格式输出,作用概括为:

  • 将输出数据转换为其声明的类型。
  • 校验数据。
  • 在 OpenAPI 的路径操作中为响应添加一个 JSON Schema。
  • 并在自动生成文档系统中使用。

1.5 请求文件UploadFile

https://fastapi.tiangolo.com/zh/tutorial/request-files/

from fastapi import FastAPI, File, UploadFile

app = FastAPI()


@app.post("/files/")
async def create_file(file: bytes = File()):
    return {"file_size": len(file)}


@app.post("/uploadfile/")
async def create_upload_file(file: UploadFile):
    return {"filename": file.filename}

UploadFile 与 bytes 相比有更多优势:

  • 这种方式更适于处理图像、视频、二进制文件等大型文件,好处是不会占用所有内存;
  • 可获取上传文件的元数据;

1.6 CORS(跨域资源共享)

https://fastapi.tiangolo.com/zh/tutorial/cors/

你可以在 FastAPI 应用中使用 CORSMiddleware 来配置它。

  • 导入 CORSMiddleware。
  • 创建一个允许的源列表(由字符串组成)。
  • 将其作为「中间件」添加到你的 FastAPI 应用中。
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

origins = [
    "http://localhost.tiangolo.com",
    "https://localhost.tiangolo.com",
    "http://localhost",
    "http://localhost:8080",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.get("/")
async def main():
    return {"message": "Hello World"}
  • allow_origins - 一个允许跨域请求的源列表。例如 [‘https://example.org’, ‘https://www.example.org’]。你可以使用 [‘*’] 允许任何源。

1.7 与SQL 通信

https://fastapi.tiangolo.com/zh/tutorial/sql-databases/

FastAPI可与任何数据库在任何样式的库中一起与 数据库进行通信。

1.8 JSONResponse 自定义返回

JSONResponse 可以设定回复内容,JSONResponse可传参数:

  • content: 响应body内容,str 或者 bytes.
  • status_code: 响应状态码,int类型,默认200.
  • headers: 响应头部,dict类型.
  • media_type:media type. 例如"text/html".
  • background:后台任务
import uvicorn
from fastapi import FastAPI
from fastapi.responses import JSONResponse

app = FastAPI()


@app.get("/")
def root():
    return JSONResponse({"status":200}, status_code=405)


if __name__ == '__main__':
    uvicorn.run(app, host="127.0.0.1", port=8080)

同时可以请求得到:

import requests

url = "http://127.0.0.1:8080"
response = requests.get(url)
response.json()

>>>  {'status': 200}

笔者其实对这个status_code比较好奇,在内容反馈中,不会返回,而是通过curl请求得到的网页状态码:

HTTP/1.1 405 OK
date: Tue, 18 Jul 2023 10:50:41 GMT
server: uvicorn
content-length: 36
content-type: application/json
 
 {'status': 200}

1.9 router用法

参考:FastAPI APIRouter 的用法教程:深入解析使用

复杂开发中,让分支更加清晰可以使用router

@router.put(
prefix="/items",
    tags=["custom"],
    responses={403: {"description": "Operation forbidden"}},
)

一些参入参数:

  • prefix 参数,路由的前缀
  • tags 将应用于特定路径操作的内容
  • responses 指特定于该路径下的响应内容,如上述便指定 404 的返回信息

请求的时候就是:0.0.0.0/items进行请求

来看一个例子,此处将三个文件进行代码统一放置:

# 路由器1.py
from fastapi import FastAPI, APIRouter
router = APIRouter()
@router.get("/")
async def hello():
    return {"message": "Hello, FastAPI!"}


# 路由器2.py
from fastapi import FastAPI, APIRouter
router = APIRouter()
@router.get("/")
async def sayhi():
    return {"message": "Hello, FastAPI!"}

# 二合一.py
from fastapi import FastAPI, APIRouter
from 路由器1.py import router as r1
from 路由器2.py import router as r2

app = FastAPI()
app.include_router(r1, prefix='/xxx', tags=['模块一'])
app.include_router(r2, prefix='/xxx', tags=['模块二'])

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="127.0.0.1", port=8000)



3 报错修复记录

3.1 RuntimeError: asyncio.run() cannot be called from a running event loop

在jupyter notebook中运行下述代码就会出现上述报错

import uvicorn
from fastapi import FastAPI
from fastapi.responses import JSONResponse

app = FastAPI()


@app.get("/")
def root():
    return JSONResponse({"status":200}, status_code=405)


if __name__ == '__main__':
    uvicorn.run(app, host="127.0.0.1", port=8080)

>>> RuntimeError: asyncio.run() cannot be called from a running event loop

这是jupyter notebook特有的,需要留意不要使用jupyter

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值