给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数NNN (≤10\le 10≤10)和LLL,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出NNN个以空格分隔的正整数,作为初始插入序列。最后LLL行,每行给出NNN个插入的元素,属于LLL个需要检查的序列。
简单起见,我们保证每个插入序列都是1到NNN的一个排列。当读到NNN为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
判断是否是同一个二叉搜索树,因为二叉搜索数是完全二叉树,所以在数组形式来看二叉搜索树的话,这个数组是一样的,即下标对应的data是一样的话,那么就是完全相同的。
#include <stdio.h>
#include <stdlib.h>
typedef struct TreeNode{
int data;
struct TreeNode* Left;
struct TreeNode* Right;
int flag; //判断是否前面读入的路径是否有被度过,加入全部为1则表示前面的路劲都被遇到过,如果前面出现了一个0则表示前面有一个没遇到过,则不是同一个二叉树
}TreeNode, *Tree;
Tree MakeTree(int N);
Tree NewTreeNode(int tmp);
Tree Insert(Tree T, int tmp);
int Judge(Tree T, int N);
int check(Tree T, int tmp);
void FreeTree(Tree T);
void ResetT(Tree T);
int main(int argc, char const *argv[])
{
int N, L;
scanf("%d", &N);
Tree T;
while(N){
scanf("%d", &L);
T = MakeTree(N);
for (int i = 0; i < L; ++i){
if(Judge(T, N))//判断两棵数是否一样
printf("Yes\n");
else
printf("No\n");
ResetT(T);//重置T中标志flag为0
}
FreeTree(T);//释放分配的空间
scanf("%d", &N);
}
return 0;
}
Tree MakeTree(int N)
{
Tree T;
int tmp;
scanf("%d", &tmp);
T = NewTreeNode(tmp);
for (int i = 1; i < N; ++i){
scanf("%d", &tmp);
T = Insert(T, tmp);
}
return T;
}
Tree NewTreeNode(int tmp)
{
Tree T = (Tree)malloc(sizeof(TreeNode));
T->data = tmp;
T->flag = 0;
T->Left = T->Right = NULL;
return T;
}
Tree Insert(Tree T, int tmp)
{
if(!T)
T = NewTreeNode(tmp);
else{
if(tmp > T->data)
T->Right = Insert(T->Right, tmp);
else
T->Left = Insert(T->Left, tmp);
}
return T;
}
int Judge(Tree T, int N)
{
int tmp, flag = 0;
scanf("%d", &tmp);
if(tmp != T->data)
flag = 1;
else
T->flag = 1;
for (int i = 1; i < N; ++i){
scanf("%d", &tmp);
if((!flag) && (!check(T, tmp)))
flag = 1;
}
if(flag)
return 0;
else
return 1;
}
int check(Tree T, int tmp)
{
if(T->flag){
if(tmp > T->data)
return check(T->Right, tmp);
else if(tmp < T->data)
return check(T->Left, tmp);
else
return 0;
}
else{
if(tmp == T->data){
T->flag = 1;
return 1;
}
else
return 0;
}
}
void FreeTree(Tree T)
{
if(T->Left)
FreeTree(T->Left);
if(T->Right)
FreeTree(T->Right);
free(T);
}
//初始化拿来对比的二叉树
void ResetT(Tree T)
{
if(T->Left)
ResetT(T->Left);
if(T->Right)
ResetT(T->Right);
T->flag = 0;
}