python求均值、中位数、众数的方法

本文介绍如何使用Python中的numpy和scipy库来计算数据集的均值、中位数及众数。通过具体示例展示了不同统计指标的计算方法,包括使用numpy的mean和median函数求解均值和中位数,以及利用scipy的mode函数快速获得数据集的众数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先需要数据源,这里随便写了一个:

nums = [1,2,3,4]

  • 均值中位数均可以使用numpy库的方法:
import numpy as np

#均值
np.mean(nums)
#中位数
np.median(nums)

  • 众数方法一
在numpy中没有直接的方法,但是也可以这样实现:

import numpy as np

counts = np.bincount(nums)
#返回众数
np.argmax(counts)
    其中np.bincount方法返回了一个长度为 nums最大值的列表,列表中的每个值代表其索引位数值出现在nums中的次数,例如

返回[2,1,0],代表0在nums中出现2次,而1在nums中出现1次,3在nums中没有出现。

    然后再使用np.argmax就能得到众数啦。但是,由于索引值是从0开始的,所以这种求众数的方法只能用在非负数据集。


  • 众数方法二——直接利用scipy下stats模块【推荐】:
from scipy import stats

stats.mode(nums)[0][0]




评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值