超分重建数据集 DIV2K & Flickr2K 下载地址【有效分享】

🥇 版权: 本文由【墨理学AI】原创、首发、各位大佬、敬请查阅、感谢三连
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️

❤️【专栏:数据集整理】❤️ 之【有效拒绝假数据】


👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀


超分重建讨论组已就位
欢迎各位超分重建的小伙伴 Get 博主维新:bravePatch,加入 SR 讨论组,添加时备注 超分重建 即可


📕 DIV2K


DIV2K:数据集有1000张高清图(2K分辨率),其中800张作为训练,100张作为验证,100张作为测试。

  • 如下图
  • 常规的SR训练,我们会需要 下载 X2、X3、X4、X8 以及原始 train 和 Validation 数据即可
    1

数据分布:

9

下载链接:

5-9

更新于 2022 - 1 - 22


最近买了服务、搭建了一个小的云盘、可以用来给各位小伙伴分享少量数据啦


目前仅限于、DIV2K 数据集、官网下载困难的小伙伴、可添加博主好友索要


📗 Flickr2K datasets


Flickr2K:

  • HR: 2650 张 png ,包含人物、动物、风景
  • Flickr2K_LR_bicubic: X2、X3、X4,目前缺少 X8

2

下载链接:

9-5


📗 Flickr2K 云盘下载途径【补充】


如果 Flickr2K datasets http://cv.snu.ac.kr/research/EDSR/Flickr2K.tar,小伙伴下载很慢的话


文末公号、或者搜索关注本博客同名公号,公号后台,回复 20201212 获取专属云盘下载链接哈;

20201212
  • 20G解压之后,可以发现有 一个 4个G Flickr2K_LR_unknown 文件夹是没有用途的,因此我把它删除了;整理数据分包,分享到了云盘;

8-9

  • 感谢您的耐心阅读,倾情支持,祝愿你的代码没有Bug , 学习顺利 !

博主所有数据集分享获取方式汇总于该码云项目


📙 预祝各位 2022 前途似锦、可摘星辰


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作

9-6

<think>好的,用户需要关于Flickr2K数据集下载和使用说明,特别是用于图像辨率任务。首先,我应该先确认用户的具体需求,可能他们正在寻找如何获取这个数据集,以及如何在他们的项目中使用它。 首先,我需要回忆一下之前整理的引用内容。引用[1]提到Flickr2K包含2650张高辨率图像,主要用于辨率训练和评估。引用[2]解释了辨率的基本概念,即从低辨率图像恢复高辨率的过程。引用[3]则提供了数据集下载链接和相关资源的位置,这可能对用户非常有用。 接下来,用户的问题包括下载和使用说明。根据引用[3],DIV2K和Flickr2K的下载地址已经在之前的资料中整理过,可能需要引导用户到那个链接。但用户可能希望直接得到链接,所以需要检查是否有可用的公开下载途径。通常,这些数据集可能托管在学术网站或云盘上,比如Google Drive或百度网盘。 另外,使用说明方面,用户可能需要知道数据集的目录结构,如何划训练集和测试集,以及如何预处理数据。例如,Flickr2K通常作为训练集,而DIV2K或其他数据集作为验证或测试。预处理步骤可能包括生成低辨率图像,通过降采样或添加噪声等方法。 同时,用户可能关心数据集的格式和图像尺寸,是否需要调整大小或转换为特定的格式(如PNG、JPEG)。此外,引用辨率模型训练时,常用的方法如SRCNN、ESRGAN等,可能需要特定的数据准备流程,比如将图像切割成小块进行训练。 可能还需要提到相关的工具库,如OpenCV或PIL,用于图像的读取和处理。以及框架如TensorFlow或PyTorch中的数据加载器如何配置使用Flickr2K。 用户可能没有提到的深层需求包括数据增强的方法,或者如何处理数据集中的版权问题,但根据问题范围,可能不需要深入这些方面。另外,需要确保提供的下载链接是可靠和最新的,避免用户遇到死链。 总结下来,回答的结构应该包括下载途径、目录结构、预处理步骤、使用示例和注意事项。需要确保所有信息准确,并正确引用提供的参考资料,特别是在提到数据集用途时引用[1]和[2],下载信息引用[3]。</think>### Flickr2K数据集下载与使用说明 #### 1. 数据集简介 Flickr2K数据集包含2650张高辨率图像,主要用于训练和评估辨率算法,例如将$32 \times 32$的低辨率图像重建为$128 \times 128$的高辨率图像[^1]。其图像辨率范围在$768 \times 1024$到$2048 \times 2048$之间,覆盖自然场景、人物、建筑等多种主题。 #### 2. 下载途径 通过学术资源平台或公开云盘可获取: - **官方渠道**:访问[NTIRE挑战赛官网](https://data.vision.ee.ethz.ch/cvl/ntire21/)查找下载入口 - **云盘资源**:百度网盘或Google Drive链接(示例路径:`pan.baidu.com/s/xxxxxx`)[^3] - **镜像站点**:部研究机构会提供镜像下载(需注意版权声明) #### 3. 目录结构 解压后典型结构如下: ``` Flickr2K/ ├── HR/             # 高辨率图像 │   ├── 0001.png │   ├── 0002.jpg │   └── ... └── LR_bicubic/X4/ # 使用双三次下采样4倍的低辨率图像     ├── 0001x4.png     ├── 0002x4.jpg     └── ... ``` #### 4. 预处理步骤 1. **辨率标准化**:将图像统一缩放到$512 \times 512$或保持原始尺寸 2. **生成LR图像**:若未提供低辨率版本,可用以下公式生成: $$ I_{LR} = \text{downsample}(I_{HR}, \text{scale_factor}=4) $$ 推荐使用OpenCV实现: ```python import cv2 lr_img = cv2.resize(hr_img, (w//4, h//4), interpolation=cv2.INTER_CUBIC) ``` 3. **数据增强**:旋转($90^\circ, 180^\circ, 270^\circ$)、镜像翻转等操作 #### 5. 训练示例(PyTorch) ```python from torch.utils.data import Dataset class Flickr2KDataset(Dataset): def __init__(self, hr_path, lr_path): self.hr_images = [os.path.join(hr_path, f) for f in os.listdir(hr_path)] self.lr_images = [os.path.join(lr_path, f) for f in os.listdir(lr_path)] def __getitem__(self, idx): hr = torch.from_numpy(cv2.imread(self.hr_images[idx])).permute(2,0,1) lr = torch.from_numpy(cv2.imread(self.lr_images[idx])).permute(2,0,1) return lr, hr ``` #### 6. 注意事项 - **内存优化**:建议使用`LMDB`数据库存储图像以避免小文件IO瓶颈 - **验证集划**:可随机选择5%的数据作为验证集(约132张) - **参数设置**:建议批量大小(batch size)设为16-32,学习率$1e^{-4}$到$5e^{-4}$
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值