图像修复使用率最高数据集总结 —— 2020、2021、博文总结 —— 墨理学AI

❤️【专栏:数据集整理】❤️ 之【有效拒绝假数据】


👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀


❤️ 2021-10-18【墨理三生】 更名 【墨理学AI】,从此博主就专注于 AI领域前沿技术学习与分享啦 ❤️


📘 图像修复使用率最高数据集总结


  1. Places2 Challenge Dataset [33]: A dataset released by MIT containing
    over 8,000,000 images from over 365 scenes, which is very suitable
    for building inpainting models as it enables the model to learn the
    distribution from many natural scenes.
  2. CelebA Dataset [15]: A dataset focusing on human face images and
    containing over 180,000 training images. The model trained on this
    dataset can easily be transferred to face editing/completion tasks.
  3. Paris StreetView Dataset [6]: A dataset containing 14,900 training
    images and 100 test images collected from street views of Paris.
    This dataset mainly focuses on the buildings in the city.
  4. ImageNet [62] is a large-scale dataset with thousands of images of
    each subnet. Each subnet is presented of 1000 images. The current
    version of the dataset contains more than 14,197,122 images where
    the 1,034,908 annotated with bounding box human body is annotated.
  5. Facade [25]: a collection of highly-structured facades from
    different cities around the world.
  6. DTD [4], an evolving dataset of 47 kinds of describable textures
    collected in the wild.
  7. CELEBA-HQ [11], a high-quality version of the human face dataset
    from CELEBA [14].

1、2、3 引自 Recurrent Feature Reasoning for Image Inpainting
   4 引自 Image inpainting: A review
5、6、7 引自 Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting


📘 整理的数据集地址OR云盘分享博文


以下为各个数据集单独成文链接,点击可达


📘 Paris StreetView Dataset 示例数据


0


2021-3-19 追更:

  • 3-18日有幸得到一个大佬指点,给安排了 Paris StreetView Dataset ;
  • 获取方法是:直接给 原作者发的邮件得到了反馈,建议大家可以积极尝试;
  • 原作者没有公开该数据集,本博文也自当尊重;
  • 如果自行获取依旧有困难、可添加博主 V 信 : bravePatch

📘 过去半年,阶段总结


博文撰写

  博文撰写,相信我属于大众类型:单纯记录自己平时学习中遇到的关键知识点、到想要较为充分的记录自己学习和工作中重要的知识并成为一个体系;在这个信息爆炸的时代,我们的大脑能够容纳的信息以及持久性非常有限,因此,文字帮我们对过去某一阶段进行了刻画,甚至在将来成为我们财富的一部分;

  最近我开始考虑自媒体,其实并没有想好具体做什么和如何去做,只是想给自己码工的身份多打一个标签,或者想要成为斜杠青年:深度学习新青年、户外小年轻、墨理学AI …

思路探讨

  个人很喜欢和小伙伴交流探讨一些学习方面的技术问题,也乐于积极回复一些常见 bug 排错思路;

  通常,看到私信或者评论提出的问题,我都会忍不住想要去细看一下是否能够帮助解决;在自己的精力和能力范围内给出自己认为合理和可能的解决思路;

但是,在面对一些新同学,有时候会私信连续一些小的问题,这会导致如下情况:

  发的私信,也没有具体告诉是哪篇博文遇到的问题,而是直接说xxx遇到错误,能否帮忙看看等内容;这种情况:我希望首先清楚知道你的问题来自的博文,其次是你的报错具体截图+批注,这样鹅才能在看到之后第一时间做出回复;

  博文中已经提出或者强调过的路径问题,其实你只要认真看博文教程,就能顺利运行代码,这种情况你会发现你问了我好几个问题,我还是只能劝你好好看博文,因为你说的问题我在刚开始运行代码时同样会遇到,环境搭建顺利之后,xxx 找不到 通常就是数据路径问题;

  确实有一些代码是我没有具体细看的,鹅帮忙指出你要修改的地方可能也就5分钟、10分钟的事情,但是修改代码这方面,鹅也是新人,短时间内搞定也不现实,自然爱莫能助,只能给出自己粗略见解,还请互相理解,自己和大多新同学一样也是刚刚开始进入图像修复这个深坑;

综上所述,我产生如下困惑:

  • 对于,没有根据的提问,会很无奈
  • 对于 ‘ 特别问题 ’ 的确能力有限
  • 对于 ‘ 连续性问题 ’ 时间有限
  • 都是成年人,大家更多依靠的需要是自己
  • 加油哈,搬砖路上,墨理愿做你的工友,偶尔帮你提桶,嘿嘿

我的收获:

  看到图像修复这个相对小众的方向,前行路上,原来不是那么孤单;

  对于与我(两年前刚刚入深度学习深坑时,一头雾水,摸石头过河,效率低下)情况相似的同学而言,我的博文分享是有用的,能够得到一些正向反馈,自己更有坚持记录的动力;

  社交、分享交流、解决问题,这本身的确是一件 使我非常快乐的事情


💬 新的一年,博文规划【一些碎碎念】


我的专栏–图像修复-代码环境搭建-知识总结

本专栏主要分享近三年图像修复相关论文环境搭建和基础实验分析;希望通过查阅我的文章能够帮大家节约环境搭建、数据集构建时间,更快速地开始实验和验证模型效果,弥补部分论文官方环境搭建及项目运行相关教程不清晰之处。

2020年12月23日

个人计划该专栏 1 周后,也就是2021年12.31号,会转换为 付费订阅专栏

这个事情,对于素来呆萌、路人缘的我来说,属于自己当前阶段人生的一种尝试;

也许我只是想、又不想那么 ‘忙’ …

最近听闻一些幸不幸,祝愿大家都平安温暖;


2021年1月14日

两周后,经过沉痛反思,我把付费专栏关闭了,自己博文水平有限,当前远远不足以以点代面;

这是一次深刻的打脸体验,哈哈哈

对于明天的路,依旧满怀期待;


2021年3月22日

最近图像修复综述已经投出去了,短时间内可能暂时不会继续去折腾这个领域的文章了;

后续继续和小伙伴交流相关内容,需要回顾知识点付出的时间成本会比较高;

所以经过一番思考,还是在今天把图像修复设置为了付费专栏;

  • 该专栏中,虽然只有 2篇 博文的实验记录算的上非常详细充分的,但是这两篇博文乃是博主把自己一周左右的工作凝聚提炼后撰写出来的,可以有效帮助大家理解和入坑图像修复;
  • 其它博文主要进行了环境搭建、基础排错、预训练模型测试、效果查阅
  • 专栏博文很少去讲一些理论层面的东西,这个在博主看来、自身才疏学浅、对于网络结构层面的理论认知、千人千面、自己并非什么学术大牛、不适合随意将自己的粗浅理解就班门弄斧、容易误人子弟;因此专栏博文更多记录的是较为拥有确定性的代码运行方面的基础排错
  • 相信该专栏能够为初入门图像修复的小伙伴带来一定收获
  • 图像修复当前属于CV领域小众方向,预计未来3年专栏订阅量也难以破百
  • 让我们看看会发生什么吧

祝各位早早上岸!

大家Get到有用知识点后,也请多为博主的文章点点赞和评论鼓励哈;

9-9


2021年3月27日

目前图像修复交流群里有5位小伙伴,如果你也遇到实验室里面缺少一起研究交流炼丹心得的同学,欢迎阅读下方,入群规则;

欢迎认真考虑、遵守约定的诚信炼丹人入坑取暖;

备注:

  • 希望即使是群里的刚刚做这个方向的同学,群里提出问题也应该是自己通过网络查询一时难以解决的,对于不经过自己思考就习惯性随意把自己遇到的问题抛给别人的同学,我们可能并不欢迎
  • 关于什么样的问题适用于在硕博士聚集的交流群里进行简单讨论、各位小伙伴、设身处地、换位思考即可明白
  • 交流群需要我们每个人自觉维护,才能成为一个有深度、有温暖的 Club

📕 图像修复技术交流分局、目前有 50+ 硕博小伙伴


2021年12月26日

9-6


📙 预祝各位 前途似锦、可摘星辰


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作

计算机视觉领域 八大专栏、不少干货、有兴趣可了解一下

9-9

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值