Android 接入 OpenCV库的三种方式

本文详细介绍了如何在Android平台上使用OpenCV进行图像处理的三种方法:1)通过Java SDK包直接调用API;2)利用C++头文件和.so库自封装JNI;3)从源码编译Android SDK库。每种方法的实现步骤、注意事项及示例代码均有详述,帮助开发者根据自身需求选择合适的方式集成OpenCV。
摘要由CSDN通过智能技术生成

       OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

       我们利用它来做一些图片的处理,能大大的优化内存的处理。下面我来说说接下OpenCV 的三种方式:

一、接入OpenCV 的Java SDK 包,这样你可以直接在Java调用OpenCV 的大部分方法。第一种方式适用于对Opencv c++ 不熟悉的童鞋,不需要直接调用C++方案, 因为SDK 已经用JNI 全部封装好了。假设你已经安装好JDK、AndroidStudio与NDK环境。

         先到官网http://opencv.org/releases.html ,下载Android 包,如:opencv-3.2.0-android-sdk.zip。

sdk 目录提供了Android的API与Java 库

sdk/java 目录包含了一个 Eclipse 项目,该项目提供 OpenCV 的Java API,且可以导入到开发环境里。

sdk/native 目录包含了OpenCV C++ 头文件(用于JNI),与Android的 .so动态库 .a静态库。

sdk/etc 目录包含了Haar 与 LBP cascades 级联。

apk  目录包含了用户安装在指定的Android设备的安装文件,该文件使opencv 库可以管理opencv API

首先: File > New > New Module

然后:选择Import Eclipse ADT Project

把sdk/java 下的项目导入到项目里,然后把这个modules 添加到 app modules里,

直接在 app 目录下build.gradle 文件里dependencies 大括号下添加:

compile project(':openCVLibrary')

接着在 app/src/main 目录下 创建一个jniLibs 目录,然后把sdk/native/libs 下所有文件 拷贝到jniLibs下,编译,运行。

如果导入后,出现一些android 自带的类识别不了,那就是因为编译的SDK版本出错了。

打开 刚导入 的模块下 build.gradle 文件,把 compileSdkVersion 与 targetSdkVersion修改成你最新的SDK版本,如:

复制代码

apply plugin: 'com.android.library'

android {
    compileSdkVersion 25
    buildToolsVersion "25.0.0"

    defaultConfig {
        minSdkVersion 15
        targetSdkVersion 25
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt'
        }
    }
}

复制代码

运行,则成功了,我发现似乎不需要再安装额外的 opencv 的apk 了。

下面链接是我添加成功的例子: 

https://github.com/xiaoxiaoqingyi/NDKDemos     OpenCV_java 项目

二、使用opencv sdk 提供的 C++ 头文件与 .so动态库 与 .a静态库,自己封装jni,这样使用的效率会比第一种方法高一些, 且可以100%使用opencv 的接口。下面看一下安装的方式:

      用AndroidStudio 创建一个项目,然后在 Java 类里创建一个native 方法,

再在app/src/main 下创建 jni,然后创建 cpp 文件对于 native 方法。

以上是一个简单的jni 方法,你可以查看我以前的 文章: http://www.cnblogs.com/xiaoxiaoqingyi/p/6524165.html

在基本的jni 跑通下,我们把 opencv 库加入项目里,首先:

1、把 sdk/native 目录 拷贝到 项目的 jni 目录下,

然后就是配置 Android.mk文件:

复制代码

LOCAL_PATH:=$(call my-dir)

include $(CLEAR_VARS)
OpenCV_INSTALL_MODULES := on
OpenCV_CAMERA_MODULES := off
OPENCV_LIB_TYPE :=STATIC

ifeq ("$(wildcard $(OPENCV_MK_PATH))","")
include $(LOCAL_PATH)/native/jni/OpenCV.mk
else
include $(OPENCV_MK_PATH)
endif
LOCAL_MODULE := OpenCV
LOCAL_SRC_FILES := com_magicing_eigenndk_NDKUtils.cpp
LOCAL_LDLIBS +=  -lm -llog
include $(BUILD_SHARED_LIBRARY)

复制代码

接着配置 Application.mk 文件:

APP_STL := gnustl_static
APP_CPPFLAGS := -frtti -fexceptions
APP_PLATFORM := android-9

最后在 cpp 文件调用 opencv 的方法, 首先导入 #include <opencv2/opencv.hpp> 如:

复制代码

#include <jni.h>
#include <string>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <opencv2/opencv.hpp>

using namespace cv;

extern "C"

  JNIEXPORT jintArray JNICALL Java_com_magicing_eigenndk_NDKUtils_gray(
          JNIEnv *env, jclass obj, jintArray buf, int w, int h) {

      jint *cbuf;
      cbuf = env->GetIntArrayElements(buf, JNI_FALSE );
      if (cbuf == NULL) {
          return 0;
      }

      Mat imgData(h, w, CV_8UC4, (unsigned char *) cbuf);

      uchar* ptr = imgData.ptr(0);
      for(int i = 0; i < w*h; i ++){
          //计算公式:Y(亮度) = 0.299*R + 0.587*G + 0.114*B
          //对于一个int四字节,其彩色值存储方式为:BGRA
          int grayScale = (int)(ptr[4*i+2]*0.299 + ptr[4*i+1]*0.587 + ptr[4*i+0]*0.114);
          ptr[4*i+1] = grayScale;
          ptr[4*i+2] = grayScale;
          ptr[4*i+0] = grayScale;
      }

      int size = w * h;
      jintArray result = env->NewIntArray(size);
      env->SetIntArrayRegion(result, 0, size, cbuf);
      env->ReleaseIntArrayElements(buf, cbuf, 0);
      return result;
  }

复制代码

然后在 activity 页面里显示处理过的图片,如下:

复制代码

public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        NDKUtils ndk = new NDKUtils();

        Bitmap bitmap = ((BitmapDrawable) getResources().getDrawable(
                R.mipmap.pic_test)).getBitmap();
        int w = bitmap.getWidth(), h = bitmap.getHeight();
        int[] pix = new int[w * h];
        bitmap.getPixels(pix, 0, w, 0, 0, w, h);
        int [] resultPixes=ndk.gray(pix,w,h);
        Bitmap result = Bitmap.createBitmap(w,h, Bitmap.Config.RGB_565);
        result.setPixels(resultPixes, 0, w, 0, 0,w, h);

        ImageView img = (ImageView)findViewById(R.id.img2);
        img.setImageBitmap(result);

    }

}

复制代码

运行成功后:

我编译成功的项目链接:

https://github.com/xiaoxiaoqingyi/NDKDemos   (OpenCV_native项目)

官网参考资料:

http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.html#native-c

三、通过opencv 的源码,重新编译成 Android sdk 库,这样的好处是能获取到最新的功能,缺点是编译有点困难(对于不懂C++/C 的童鞋),且新的代码或许会存在不兼容与错误。

http://code.opencv.org/projects/opencv/wiki/Building_OpenCV4Android_from_trunk

     以上的链接是官网推荐的编译过程,我也尝试过编译成功,如果在windows 下安装Cygwin,然后来编译是通过不了的,需要重新安装cmake、shell 以及其它的软件,编译的过程确实复杂很多。

     我是在MAC下编译的,只需安装 cmake软件,当然也要有NDK的环境。大概的步骤:

https://github.com/opencv/opencv 下载opencv 源码包

1、在mac 下安装好 cmake 软件,

2、配置NDK环境变量, 参考百度:http://jingyan.baidu.com/article/d2b1d1029c1ea65c7e37d4c9.html

3、build_android_arm/install 目录下 得到编译好的jni 目录。

     如果你想编译 opencv_contrib 也就是 opencv extra库的话,你需要把https://github.com/Itseez/opencv_contrib 额外库包也下载下来。我曾经把opencv_contrib包的tracking模块 加入到opencv 核心库,编译到PC的CodeBlocks开发环境就成功了,但是编译成Android的环境就出错了,这个问题我一直没有解决,最后我换用了其它的方法,我把相应的一些资料提供给大家:

https://github.com/alexkarargyris/Caffe_OpenCV_Android_App

https://zami0xzami.wordpress.com/2016/03/17/building-opencv-for-android-from-source/

      我参考了上述的资料,在加载opencv 额外库的时候,编译了几次也没能成功,会报cmake 编译出错。我也让C++ 的同事尝试用cmake 帮我编译,也没能成功,也许我们对cmake 了解不够深,据说opencv extra 库是需要收费的,所以Android端不能直接编译进来,但是PC端是成功编译了的。如有编译成功的大神,请多多指教!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值