动手学深度学习Pytorch版
Uncle_Sugar
数学系伪程序员
展开
-
Task09 打卡 目标检测基础;图像风格迁移;图像分类案例1(1天)
1 目标检测边界框:生成方式是左上角右下角的坐标值,显示的时候是左上角坐标和高宽(简单的就可以由右下角坐标得到)锚框:目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中...原创 2020-02-25 21:08:41 · 563 阅读 · 0 评论 -
Task 6 打卡 批量归一化和残差网络;凸优化;梯度下降
关于BN 层,这篇文章讲的比较清楚https://zhuanlan.zhihu.com/p/34879333BN层一是为了避免神经网络层与层之间数据的分布差别太大,于是将特征的分布处理成正态分布;但同时,不同特征本身的差异也是数据的信息之一,因此又训练了两个参数,试图还原一部分特征之间的差异。关于残差网络https://zhuanlan.zhihu.com/p/80226180...原创 2020-02-25 20:31:11 · 174 阅读 · 0 评论 -
Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
。。。。。。。。。。。。。被老师要求两天实现一篇轨迹挖掘文章,这个我是真没时间了,惭愧,先水一下,以后补上原创 2020-02-19 21:40:41 · 118 阅读 · 0 评论 -
Task05:卷积神经网络基础;leNet;卷积神经网络进阶
记录一道做错的题目,忘记了有左padding,和右padding 其他的题目全都做对了原创 2020-02-19 21:38:06 · 108 阅读 · 0 评论 -
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
记录一下标签偏移这个概念,感觉还没有懂,之后慢慢总结标签偏移当我们认为导致偏移的是标签P(y)上的边缘分布的变化,但类条件分布是不变的P(x∣y)时,就会出现相反的问题。当我们认为y导致x时,标签偏移是一个合理的假设。例如,通常我们希望根据其表现来预测诊断结果。在这种情况下,我们认为诊断引起的表现,即疾病引起的症状。有时标签偏移和协变量移位假设可以同时成立。例如,当真正的标签函数是确定的和不...原创 2020-02-19 21:36:01 · 161 阅读 · 0 评论 -
动手学深度学习PyTorch版_第二次打卡
全部JupyterNotebook来自https://github.com/ShusenTang/Dive-into-DL-PyTorch主要是做一些基础知识的记录第二次的内容是文本预处理,语言模型,循环神经网络基础。1.rere 即正则表达式 regular expression。从这段代码上看,python 的写法确实优雅re.sub(a, b, c)是将c中所有a的子串替...原创 2020-02-14 21:19:06 · 256 阅读 · 0 评论 -
动手学深度学习PyTorch版_第一次打卡
被朋友拉着报名了伯禹教育的一门免费网课,算是熟悉一下PyTorch全部课件来自https://github.com/ShusenTang/Dive-into-DL-PyTorch课上第一个任务动手学线性回归用到的Jupyter Notebook 在这个网址https://github.com/ShusenTang/Dive-into-DL-PyTorch/blob/master/c...原创 2020-02-13 19:25:03 · 351 阅读 · 0 评论