关于BN 层,这篇文章讲的比较清楚
https://zhuanlan.zhihu.com/p/34879333
BN层一是为了避免神经网络层与层之间数据的分布差别太大,于是将特征的分布处理成正态分布;但同时,不同特征本身的差异也是数据的信息之一,因此又训练了两个参数,试图还原一部分特征之间的差异。
关于残差网络
https://zhuanlan.zhihu.com/p/80226180
然后题目中问你随机梯度下降的时间复杂度,我是真的不会回答,那要看你算不算上算梯度的时间。
关于BN 层,这篇文章讲的比较清楚
https://zhuanlan.zhihu.com/p/34879333
BN层一是为了避免神经网络层与层之间数据的分布差别太大,于是将特征的分布处理成正态分布;但同时,不同特征本身的差异也是数据的信息之一,因此又训练了两个参数,试图还原一部分特征之间的差异。
关于残差网络
https://zhuanlan.zhihu.com/p/80226180
然后题目中问你随机梯度下降的时间复杂度,我是真的不会回答,那要看你算不算上算梯度的时间。