
LangChain
文章平均质量分 82
华尔街的幻觉
不积跬步 无以至千里
展开
-
使用自定义LLM:RAGAs评估
Ragas默认使用ChatGPT,需要提前配置openai-Key,如果没有,就用自定义的智谱AIimport os这是智谱AI支持的语言模型和向量模型。原创 2024-11-11 17:37:30 · 1418 阅读 · 7 评论 -
使用OpenAI控制大模型的输出(免费)——response_format
接口调用,就能使用跟OpenAI类似的函数功能。免费第三方api-key(硅基流动)使用。格式,还能控制大模型的输出格式,不能说。支持十几个免费的大模型。原创 2024-11-01 11:09:13 · 1085 阅读 · 0 评论 -
使用LangChain自定义大模型 | 完美调用第三方 API | 如OneAPI/硅基流动
很多OneAPI类的平台,提供了免费的API-KEY。【方法1】通过`REST`接口进行服务调用,【方法2】通过 `OpenAI`接口调用。原创 2024-10-31 13:34:50 · 5219 阅读 · 0 评论 -
一文了解大模型中的SDK和API
简单说,SDK是python包API是其中最关键的一部分api-key是连接两个系统的通行证(口令)系统是指,一边只做对话大模型的智谱,一边是企业/本地代码环境。要用智谱llm对话功能,就要把 智谱ai 配置到代码环境中。代码里就不用再从头写一个大模型出来。搞清楚了吗?当然,sdk不仅是python包,可以是其他语言的包(如java包)原创 2024-10-18 10:24:46 · 1065 阅读 · 0 评论 -
LangChain实战 | 3分钟学会SequentialChain传递多个参数
SequentialChain参数传递,总结了以下四种类型。原创 2024-05-28 14:06:51 · 1530 阅读 · 0 评论 -
LangChain实战(国内大模型)| Chains的四个核心模块实测——LLMChain、SimpleSequentialChain、SequentialChain和LLMRouteChain
作为 LangChain 的核心模块之一,的重要性不言而喻。它相当于是所有复杂逻辑的基础,。Chain 的设计非常巧妙,可以说是大模型应用的最佳实践之一。Chain 的设计非常巧妙,也非常值得借鉴,也是为什么 LangChain 能火爆的主要原因之一。Chain的主要功能是根据需要将各种能力进行拼接和整合。原创 2024-05-24 14:57:00 · 3236 阅读 · 2 评论 -
LangChain搭建Agent | 使用initialize_agent
构建agent,这个方法是过时了吗?官方文档也没更新,官方示例也运行错误llm就按照这篇文章配置任意一个。有路过的大佬指点一二么?原创 2024-05-16 09:55:57 · 2181 阅读 · 1 评论 -
LangChain连接国内大模型测试|智谱ai、讯飞星火、通义千问
n\n根据题目中的第二个条件,桌子比椅子多288元,可以得到以下等式:\n\n\[ 10x - x = 288 \]\n\n解这个方程,我们可以找到 \( x \) 的值:\n\n\[ 9x = 288 \]\n\[ x = \frac{288}{9} \]\n\[ x = 32 \]\n\n所以一把椅子的价格是32元,一张桌子的价格就是:\n\n\[ 10x = 10 \times 32 = 320 \]\n\n因此,一张桌子320元,一把椅子32元。而要处理事务,还得依赖于判断力和处事才能。原创 2024-05-09 11:03:23 · 13032 阅读 · 0 评论 -
LLMChain使用 | RouterChain的使用 - 用本地大模型搭建多Agents
RouterChian使用场景的示意图,我们可以看到,一个RouterChain连接了多个下游的子链,每个链都是一个小应用,当RouterChain接收用户的输入,其可以根据用户输入路由到和输入最相关的子链上,并由子链产生输出;例如,用户输入是“请帮我写一首诗”,当RouterChain接收后,会自动路由到“诗人”这个子链,由它来输出结果。原创 2024-02-22 23:10:49 · 2441 阅读 · 0 评论 -
LLMChain使用初探 -- OLLaMA+LangChain搭建本地大模型
LLMChain是一个简单的链,接受一个提示模板,使用用户输入格式化它并从LLM返回响应。其中,prompt_template是一个非常关键的组件,可以让你创建一个非常简单的链,它将接收用户输入,使用它格式化提示,然后将其发送到LLM。原创 2024-02-20 17:16:12 · 21362 阅读 · 6 评论