
动手学深度学习 - Pytorch版
华尔街的幻觉
不积跬步 无以至千里
展开
-
动手学深度学习PyTorch版--大作业--Fashion-mnist分类任务
Fashion-mnist经典的MNIST数据集包含了大量的手写数字。十几年来,来自机器学习、机器视觉、人工智能、深度学习领域的研究员们把这个数据集作为衡量算法的基准之一。你会在很多的会议,期刊的论文中发现这个数据集的身影。实际上,MNIST数据集已经成为算法作者的必测的数据集之一。有人曾调侃道:“如果一个算法在MNIST不work, 那么它就根本没法用;而如果它在MNIST上work, 它在其...原创 2020-03-01 21:14:22 · 1696 阅读 · 1 评论 -
动手学深度学习PyTorch版--Task8--图像分类案例1;图像分类案例2
一.案例1:Kaggle上的图像分类(CIFAR-10)现在,我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10# 本节的网络需要较长的训练时间# 可以在Kaggle访问:# https://www.kaggle.com/boyuai/boyu-d2l-image-c...原创 2020-02-21 16:28:54 · 974 阅读 · 0 评论 -
动手学深度学习PyTorch版--Task7--目标检测基础;图像风格迁移
一.目标检测基础1.目标检测和边界框%matplotlib inlinefrom PIL import Imageimport syssys.path.append('/home/kesci/input/')import d2lzh1981 as d2l# 展示用于目标检测的图d2l.set_figsize()img = Image.open('/home/kesci/inp...原创 2020-02-21 03:37:31 · 2778 阅读 · 2 评论 -
动手学深度学习PyTorch版--Task6--批量归一化和残差网络;凸优化;梯度下降
一.批量归一化和残差网络1.批量归一化(BatchNormalization)对输入的标准化(浅层模型)处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近批量归一化(深度模型)利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。① 对全连接层做批量归一化② 对卷积层做批量归⼀化...原创 2020-02-19 23:27:28 · 449 阅读 · 0 评论 -
动手学深度学习PyTorch版--Task4、5--机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;;卷积神经网络基础;leNet;卷积神经网络进阶
一.机器翻译及相关技术机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。1.Encoder-Decoderencoder:输入到隐藏状态decoder:隐藏状态到输出class Encoder(nn.Module): def __in...原创 2020-02-18 01:11:05 · 506 阅读 · 0 评论 -
动手学深度学习PyTorch版--Task3--过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
一、过拟合、欠拟合及其解决方案1.过拟合、欠拟合的概念训练误差和泛化误差在解释上述现象之前,我们需要区分 训练误差(training error)和 泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,...原创 2020-02-16 16:17:53 · 2272 阅读 · 0 评论 -
动手学深度学习PyTorch版--Task1--线性回归;Softmax与分类模型、多层感知机
一.线性回归主要内容包括:1.线性回归的基本要素2.线性回归模型从零开始的实现3.线性回归模型使用pytorch的简洁实现1.线性回归的基本要素2.线性回归模型从零开始的实现import packages and modules%matplotlib inlineimport torchfrom IPython import displayfrom matplotlib i...原创 2020-02-13 02:36:19 · 838 阅读 · 3 评论 -
动手学深度学习PyTorch版--Task2--文本预处理;语言模型;循环神经网络基础
一.文本预处理文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:1.读入文本2.分词3.建立字典,将每个词映射到一个唯一的索引(index)4.将文本从词的序列转换为索引的序列,方便输入模型1.读入文本`import collectionsimport redef read_time_machine():wit...原创 2020-02-12 23:08:53 · 1095 阅读 · 0 评论