书生浦语大模型
文章平均质量分 78
华尔街的幻觉
不积跬步 无以至千里
展开
-
书生·共学计划|训练营又开始啦!
🥰 在大模型技术的浪潮中,面对混杂的众多信息,如何获取有效、可信的学习资源成为了一项挑战。为此,我们推出“书生·共学计划”,鼓励大家将实战营活动分享给你身边有需要的小伙伴,让每一位热爱技术的朋友都能在这个复杂的信息环境中找到自己的航向,帮助他们在大模型的学习之路上少走弯路。的手机号码保持一致,工作人员将向此手机号码对应的算力平台账号发放算力资源。原创 2024-08-05 14:02:08 · 224 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day07 结营证书
记录一下书生浦语的结营证书!原创 2024-05-08 09:33:13 · 119 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day06 OpenCompass | 评测 internlm2-chat-1_8b 模型在 C-Eval 数据集上的性能
列出所有跟 InternLM 及 C-Eval 相关的配置。执行了以下3种方法,才成功启动评测。原创 2024-04-30 15:25:58 · 539 阅读 · 1 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day05 Lagent & AgentLego 智能体应用搭建
Lagent是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。Arxiv搜索Bing 地图Google 学术搜索Google 搜索交互式 IPython 解释器IPython 解释器PPTPython 解释器在本节中,我们将基于 Lagent 自定义一个工具。Lagent 中关于工具部分的介绍文档位于。继承BaseAction类实现简单工具的run方法;或者实现工具包内每个子工具的功能。原创 2024-04-29 17:18:07 · 870 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day04 XTuner微调 | 1.8B 多模态Agent(Part 2: 多模态部分)
使用GPT-4V对图像数据生成描述,以此构建出大量的数据对。利用这些数据对,配合文本单模态LLM,训练出一个Image Projector。所使用的文本单模型LLM和训练出来的,统称为LLaVA模型。Image Projector的训练和测试,有点类似之前我们讲过的LoRA微调方案。二者都是在已有LLM的基础上,用新的数据训练一个新的小文件。只不过,LLM套上LoRA之后,有了新的灵魂(角色);而LLM套上之后,才有了眼睛。在本节中,我们将 自己构造。原创 2024-04-17 16:50:48 · 1005 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day04 XTuner微调 | 1.8B 多模态Agent(Part 1: LLM 部分)
在本节课中讲一步步带领大家体验如何利用 XTuner 完成个人小助手的微调!为了能够让大家更加快速的上手并看到微调前后对比的效果,那我这里选用的就是上一期的课后作业:用 QLoRA 的方式来微调一个自己的小助手!原创 2024-04-16 15:11:07 · 1178 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day03 LMDeploy量化部署 | LLM&VLM实战
LMDeploy是涵盖了LLM 任务全套轻量化、部署和服务解决方案的集成功能包,TurboMind是LMDeploy的一个推理引擎,是一个子模块。LMDeploy也可以使用pytorch作为推理引擎。TurboMind是LMDeploy团队开发的一款关于LLM推理的高效推理引擎,它的主要功能包括:LLaMa 结构模型的支持,continuous batch 推理模式和可扩展的 KV 缓存管理器。原创 2024-04-14 14:01:10 · 944 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day02 茴香豆 | 搭建RAG智能助理
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用的茴香豆应用,就应用了 RAG 技术,可以快速、高效的搭建自己的知识领域助手。原创 2024-04-11 15:29:14 · 731 阅读 · 0 评论 -
书生·浦语2.0(InternLM2)大模型实战--Day01 趣味 Demo | 部署InternLM2-Chat-1.8B模型
了解完[书生·浦语InternLM2大模型实战--基本认知] 后,就可以做 Homework-demo 啦Day01的作业基本是按照GitHub链接完成 [GitHub -- 轻松玩转书生·浦语大模型趣味 Demo]原创 2024-03-31 15:53:56 · 1208 阅读 · 0 评论 -
书生·浦语InternLM2大模型实战--基本认知(PPT版)
书生葡语大模型的全年度开源体系,以及书上铺与大模型的发展历程和特点,其中包括轻量级和重量级模型以及不同能力的模型。原创 2024-03-31 11:51:41 · 610 阅读 · 0 评论